Publications

Detailed Information

Effects of Expert-Determined Reference Standards in Evaluating the Diagnostic Performance of a Deep Learning Model: A Malignant Lung Nodule Detection Task on Chest Radiographs

Cited 4 time in Web of Science Cited 4 time in Scopus
Authors

Huh, Jung Eun; Lee, Jong Hyuk; Hwang, Eui Jin; Park, Chang Min

Issue Date
2023-02
Publisher
NLM (Medline)
Citation
Korean journal of radiology, Vol.24 No.2, pp.155-165
Abstract
Copyright © 2023 The Korean Society of Radiology.OBJECTIVE: Little is known about the effects of using different expert-determined reference standards when evaluating the performance of deep learning-based automatic detection (DLAD) models and their added value to radiologists. We assessed the concordance of expert-determined standards with a clinical gold standard (herein, pathological confirmation) and the effects of different expert-determined reference standards on the estimates of radiologists' diagnostic performance to detect malignant pulmonary nodules on chest radiographs with and without the assistance of a DLAD model. MATERIALS AND METHODS: This study included chest radiographs from 50 patients with pathologically proven lung cancer and 50 controls. Five expert-determined standards were constructed using the interpretations of 10 experts: individual judgment by the most experienced expert, majority vote, consensus judgments of two and three experts, and a latent class analysis (LCA) model. In separate reader tests, additional 10 radiologists independently interpreted the radiographs and then assisted with the DLAD model. Their diagnostic performance was estimated using the clinical gold standard and various expert-determined standards as the reference standard, and the results were compared using the t test with Bonferroni correction. RESULTS: The LCA model (sensitivity, 72.6%; specificity, 100%) was most similar to the clinical gold standard. When expert-determined standards were used, the sensitivities of radiologists and DLAD model alone were overestimated, and their specificities were underestimated (all p-values < 0.05). DLAD assistance diminished the overestimation of sensitivity but exaggerated the underestimation of specificity (all p-values < 0.001). The DLAD model improved sensitivity and specificity to a greater extent when using the clinical gold standard than when using the expert-determined standards (all p-values < 0.001), except for sensitivity with the LCA model (p = 0.094). CONCLUSION: The LCA model was most similar to the clinical gold standard for malignant pulmonary nodule detection on chest radiographs. Expert-determined standards caused bias in measuring the diagnostic performance of the artificial intelligence model.
ISSN
1229-6929
URI
https://hdl.handle.net/10371/205345
DOI
https://doi.org/10.3348/kjr.2022.0548
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Related Researcher

  • College of Medicine
  • Department of Medicine
Research Area Radiology

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share