Publications
Detailed Information
The inactivation efficacy of plasma-activated acetic acid against Salmonella Typhimurium cells and biofilm
Cited 5 time in
Web of Science
Cited 5 time in Scopus
- Authors
- Issue Date
- 2022-11
- Publisher
- Blackwell Publishing Inc.
- Citation
- Journal of Applied Microbiology, Vol.133 No.5, pp.3007-3019
- Abstract
- Aim This study aimed to examine the inactivation efficacy of plasma-activated acetic acid (PAAA) against Salmonella Typhimurium cells and biofilm and elucidate underlying chemical inactivation pathway. Methods and Results PAAA was prepared by discharging plasma to 20 ml of 0.2% (v/v) acetic acid (AA) for 20 min (2.2 kHz and 8.4 kVpp). The count of cells and biofilms decreased by 5.71 log CFU ml(-1) and 4 log CFU/cm(2) after 10 min of treatment with 0.2% PAAA and 0.4% PAAA compared with control group (without any treatment), respectively. In 0.2% PAAA, the concentrations of hydrogen peroxide (H2O2) and nitrate anions were directly proportional to the plasma discharge time, whilst nitrite anion (NO2-) was not detected. However, the pH values of both 0.2% PAAA and plasma-activated water were inversely proportional to the plasma discharge time. Treatment with catalase, L-histidine, D-mannitol and sodium azide inhibited the antibacterial activity of PAAA. Conclusion H2O2, singlet oxygen, hydroxyl radical and NO2- are involved in the generation and decomposition of peroxynitrous acid generated from PAAA functioned as intermediate agent, which could diffuse through cell membranes of bacteria and induce cell injury. Significance and Impact of Study This study provides the understanding of efficacy and selectivity of PAAA which could be a novel decontamination agent.
- ISSN
- 1364-5072
- Files in This Item:
- There are no files associated with this item.
Related Researcher
- College of Agriculture and Life Sciences
- Department of Agricultural Biotechnology
Item View & Download Count
Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.