Publications

Detailed Information

Myricetin induces apoptosis and autophagy in human gastric cancer cells through inhibition of the PI3K/Akt/mTOR pathway

Cited 18 time in Web of Science Cited 21 time in Scopus
Authors

Han, So-Hee; Lee, Jae-Han; Woo, Joong-Seok; Jung, Gi-Hwan; Jung, Soo-Hyun; Han, Eun-Ji; Kim, Bumseok; Cho, Sung Dae; Nam, Jeong Seok; Che, Jeong Hwan; Jung, Ji-Youn

Issue Date
2022-05
Publisher
Elsevier BV
Citation
Heliyon, Vol.8 No.5, p. e09309
Abstract
Myricetin, a natural flavonoid present in berries, nuts, and green tea, is well-known for its anticancer properties. Even though several previous studies have reported the anticancer effects induced by myricetin, these effects have not yet been confirmed in the adenocarcinoma gastric cell line (AGS). Moreover, the exact mechanisms of myricetin-induced apoptosis and autophagy have not been clearly identified either. Therefore, in this study, we aimed to examine the role of myricetin in inducing apoptosis and autophagy in AGS gastric cancer cells. First, the survival rate of AGS gastric cancer cells was assessed using the 3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide (MTT) cell viability assay. Thereafter, the rate of apoptosis was analyzed using40,6-diamidino2-phenylindole (DAPI) staining as well as annexin V and propidium iodide (PI) staining, and the expression of the proteins associated with apoptosis, PI3K/Akt/mTOR pathway, and autophagy was examined by western blotting. We observed that myricetin reduced the survival rate of AGS gastric cancer cells by inhibiting the PI3K/Akt/ mTOR pathway, thereby inducing apoptosis and autophagy. Similar results were also obtained in vivo, and tumor growth was inhibited. Therefore, in the AGS gastric cancer cells, myricetin seems to inhibit the PI3K/Akt/mTOR pathway, which in turn leads to apoptosis in vitroand in vivo, cell-protective autophagy, as well as inhibition of cancer cell proliferation. These results indicate the potential of myricetin as a natural anticancer agent.
ISSN
2405-8440
URI
https://hdl.handle.net/10371/205479
DOI
https://doi.org/10.1016/j.heliyon.2022.e09309
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Related Researcher

  • School of Dentistry
  • Department of Dentistry
Research Area Discovery of molecular targets related to oral cancer metastasis and identification of signal transduction system, Identifying the role of immunological tolerance in oral cancer, Presenting a new concept oral cancer prevention and treatment strategy through identification of major molecular targets and mechanisms related to oral cancer development, 구강암 발병관련 주요 분자표적 및 기전 규명을 통한 신개념 구강암 예방 및 치료전략 제시, 구강암 전이관련 분자표적 발굴 및 신호전달체계 규명, 구강암에서 면연관용의 역할 규명

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share