Publications

Detailed Information

Machine learning-based prediction of acute kidney injury after nephrectomy in patients with renal cell carcinoma

Cited 14 time in Web of Science Cited 13 time in Scopus
Authors

Lee, Yeonhee; Ryu, Jiwon; Kang, Min Woo; Seo, Kyung Ha; Kim, Jayoun; Suh, Jungyo; Kim, Yong Chul; Kim, Dong Ki; Oh, Kook-Hwan; Joo, Kwon Wook; Kim, Yon Su; Jeong, Chang Wook; Lee, Sang Chul; Kwak, Cheol; Kim, Sejoong; Han, Seung Seok

Issue Date
2021-08-03
Publisher
Nature Publishing Group
Citation
Scientific Reports, Vol.11 No.1, p. 15704
Abstract
The precise prediction of acute kidney injury (AKI) after nephrectomy for renal cell carcinoma (RCC) is an important issue because of its relationship with subsequent kidney dysfunction and high mortality. Herein we addressed whether machine learning (ML) algorithms could predict postoperative AKI risk better than conventional logistic regression (LR) models. A total of 4104 RCC patients who had undergone unilateral nephrectomy from January 2003 to December 2017 were reviewed. ML models such as support vector machine, random forest, extreme gradient boosting, and light gradient boosting machine (LightGBM) were developed, and their performance based on the area under the receiver operating characteristic curve, accuracy, and F1 score was compared with that of the LR-based scoring model. Postoperative AKI developed in 1167 patients (28.4%). All the ML models had higher performance index values than the LR-based scoring model. Among them, the LightGBM model had the highest value of 0.810 (0.783-0.837). The decision curve analysis demonstrated a greater net benefit of the ML models than the LR-based scoring model over all the ranges of threshold probabilities. The application of ML algorithms improves the predictability of AKI after nephrectomy for RCC, and these models perform better than conventional LR-based models.
ISSN
2045-2322
URI
https://hdl.handle.net/10371/205660
DOI
https://doi.org/10.1038/s41598-021-95019-1
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Related Researcher

  • College of Medicine
  • Department of Medicine
Research Area Nephrology, Transplantation, Urology

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share