Publications

Detailed Information

Aging-related lipidomic changes in mouse serum, kidney, and heart by nanoflow ultrahigh-performance liquid chromatography-tandem mass spectrometry

Cited 27 time in Web of Science Cited 29 time in Scopus
Authors

Eum, Jung Yong; Lee, Jong Cheol; Yi, Sun Shin; Kim, Il Yong; Seong, Je Kyung; Moon, Myeong Hee

Issue Date
2020-05
Publisher
Elsevier BV
Citation
Journal of Chromatography A, Vol.1618, p. 460849
Abstract
Aging refers to the intracellular accumulation of reactive oxygen species that damages proteins, DNA, and lipids. As alterations in lipid metabolism may trigger metabolic disorders and the onset of metabolic diseases, changes in lipid profiles can be closely related to aging. In this study, a comprehensive lipidomic comparison between 4- and 25-month-old mice was performed to investigate age-induced changes in the lipid profiles of mouse serum, kidney, and heart using nanoflow ultrahigh-performance liquid chromatography-electrospray ionization-tandem mass spectrometry. Quantitative analysis of 279 of the 542 identified lipids revealed significant changes upon aging, mainly showing decreased levels in the three types of samples. Exceptionally, most triacylglycerols showed significant increases in heart tissue. The kidney was influenced more by aging than the serum and heart. The highly abundant lipids in each lipid class with significant decreases (> 2-fold, p < 0.01) were lysophosphatidic acid 18:1, lysophosphatidylinositol 20:4, and ceramide d:18:1/24:0 in serum; lysophosphatidylglycerol 16:0 in heart tissue; and eight phosphatidylethanolamines (20:4, 22:6, 36:2, 36:3, 38:4, 38:5, 38:6, 40:6, and 40:7), two cardiolipins (72:7 and 72:8), and lysophosphatidylcholine 18:0 in kidney tissue. The findings indicate the potential of lipidomic analysis to study characteristic age-related lipid changes. (C) 2020 Elsevier B.V. All rights reserved.
ISSN
0021-9673
URI
https://hdl.handle.net/10371/206010
DOI
https://doi.org/10.1016/j.chroma.2020.460849
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Related Researcher

  • College of Veterinary Medicine
  • Department of Veterinary Medicine
Research Area Metabolic syndrome model construction and omics research, Mouse locomotion and metabolic phenotyping analysis, Study of immune regulatory response in obesity, 대사증후군 모델 구축 및 오믹스 연구, 마우스 운동 및 대사 표현형 분석, 비만에서의 면역 조절 반응 연구

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share