Publications

Detailed Information

URNet : User-Resizable Residual Networks with Conditional Gating Module

Cited 7 time in Web of Science Cited 7 time in Scopus
Authors

Lee, Sangho; Chang, Simyung; Kwak, Nojun

Issue Date
2020-04
Publisher
ASSOC ADVANCEMENT ARTIFICIAL INTELLIGENCE
Citation
THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, Vol.34, pp.4569-4576
Abstract
Convolutional Neural Networks are widely used to process spatial scenes, but their computational cost is fixed and depends on the structure of the network used. There are methods to reduce the cost by compressing networks or varying its computational path dynamically according to the input image. However, since a user can not control the size of the learned model, it is difficult to respond dynamically if the amount of service requests suddenly increases. We propose User-Resizable Residual Networks (URNet), which allows users to adjust the computational cost of the network as needed during evaluation. URNet includes Conditional Gating Module (CGM) that determines the use of each residual block according to the input image and the desired cost. CGM is trained in a supervised manner using the newly proposed scale(cost) loss and its corresponding training methods. URNet can control the amount of computation and its inference path according to user's demand without degrading the accuracy significantly. In the experiments on ImageNet, URNet based on ResNet-101 maintains the accuracy of the baseline even when resizing it to approximately 80% of the original network, and demonstrates only about 1% accuracy degradation when using about 65% of the computation.
ISSN
2159-5399
URI
https://hdl.handle.net/10371/206012
DOI
https://doi.org/10.1609/aaai.v34i04.5886
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Related Researcher

  • Graduate School of Convergence Science & Technology
  • Department of Intelligence and Information
Research Area Feature Selection and Extraction, Object Detection, Object Recognition

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share