Publications
Detailed Information
Antimicrobial effects and mechanism of plasma activated fine droplets produced from arc discharge plasma on planktonic Listeria monocytogenes and Escherichia coli O157:H7
Cited 22 time in
Web of Science
Cited 25 time in Scopus
- Authors
- Issue Date
- 2020-03
- Publisher
- Institute of Physics Publishing
- Citation
- Journal of Physics D: Applied Physics, Vol.53 No.12, p. 124002
- Abstract
- In this study, we investigated the antimicrobial effects of plasma activated fine droplet (PAD) produced from arc discharge plasma on planktonic Listeria monocytogenes and Escherichia coli O157:H7. NaCl (0.9%, w/v) was used as the feeding solution for the plasma discharge. The inactivation mechanism of the PAD treatment was also investigated. PAD mainly contains H2O2 and OCl-, which play a significant role in the inactivation process against L. monocytogenes and E. coli O157:H7. The population of L. monocytogenes and E. coli O157:H7 was significantly reduced by approximately 3 and 4 log units, respectively, within 5 min of exposure to PAD. However, the bactericidal effects of PAD against L. monocytogenes and E. coli O157:H7 showed different trends by showing 0.58 and 4.13 log reductions, respectively, after 1 min of PAD exposure time. The change of membrane integrity was evaluated using two DNA-binding fluorescence dyes, SYTO 9 and propidium iodide (PI). The breakage of the cell wall and membrane of both microorganisms was evidenced by the uptake of PI by cells after 5 min of exposure to PAD, but the effect was less in L. monocytogenes compared to E. coli O157:H7 after 1 min of PAD exposure time. The transmission electron microscopy results clearly showed morphological changes in both microorganisms, including denaturation or leakage of intracellular materials as a consequence of PAD treatment. These findings suggest that PAD-induced chemical species can eventually affect the intracellular materials of bacterial cells by passing through or attacking the cell envelope. In addition, L. monocytogenes are less susceptible to PAD compared with E. coli O157:H7.
- ISSN
- 0022-3727
- Files in This Item:
- There are no files associated with this item.
Related Researcher
- College of Agriculture and Life Sciences
- Department of Agricultural Biotechnology
Item View & Download Count
Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.