Publications
Detailed Information
Deep leaning-based approach for mental workload discrimination from multi-channel fNIRS
Cited 0 time in
Web of Science
Cited 16 time in Scopus
- Authors
- Issue Date
- 2019
- Publisher
- Springer Verlag
- Citation
- Lecture Notes in Electrical Engineering, Vol.524, pp.431-440
- Abstract
- As a non-invasive optical neuroimaging technique, functional near infrared spectroscopy (fNIRS) is currently used to assess brain dynamics during the performance of complex works and everyday tasks. However, the deep learning approaches to distinguish stress levels based on the changes of hemoglobin concentrations have not yet been extensively investigated. In this paper, we evaluated the efficiencies of advanced methods differentiating the rest and task periods during stroop task experiments. First, we explored that the apparent changes of oxy-hemoglobin (HbO) and deoxy-hemoglobin (HbR) concentrations associated with two mental stages did exist across each participant. Then, a novel discrimination framework was studied. Deep learning approaches, including convolutional neural network (CNN), deep belief networks (DBN), have enabled better classification accuracies of 84.26 ± 9.10% and 65.43 ± 1.59% as our preliminary study.
- ISSN
- 1876-1100
- Files in This Item:
- There are no files associated with this item.
- Appears in Collections:
Item View & Download Count
Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.