Publications

Detailed Information

Human Detection by Deep Neural Networks Recognizing Micro-Doppler Signals of Radar

Cited 8 time in Web of Science Cited 14 time in Scopus
Authors

Kwon, Jihoon; Lee, Seungeui; Kwak, Nojun

Issue Date
2018
Publisher
IEEE
Citation
2018 15TH EUROPEAN RADAR CONFERENCE (EURAD), pp.198-201
Abstract
The purpose of this paper is to show the effectiveness of Deep neural networks (DNN) for recognizing the micro-Doppler radar signals generated by human walking and background noises. To show this, we collected various micro-Doppler signals considering the actual human walking motion and background noise characteristics. Unlike the previous researches that required a complex feature extraction process, we directly use the FFT result of the input signal as a feature vector without any additional pre-processing. This technique helps not to use heuristic approaches to get a meaningful feature vector. We designed two types of DNN classifier. The first is the binary classifier to classify human walking Doppler signals and background noises. The second is the multiclass classifier that is roughly able to recognize a circumstance of a place as well as human walking Doppler signals. DNN for the binary classifier showed about 97.5% classification accuracy for the test dataset and DNN(ReLU) for the multiclass classifier showed about 95.6% accuracy.
URI
https://hdl.handle.net/10371/206566
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Related Researcher

  • Graduate School of Convergence Science & Technology
  • Department of Intelligence and Information
Research Area Feature Selection and Extraction, Object Detection, Object Recognition

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share