Publications

Detailed Information

Low temperature thermal engineering of nanoparticle ink for flexible electronics applications

Cited 28 time in Web of Science Cited 31 time in Scopus
Authors

Ko, Seung Hwan

Issue Date
2016-07
Publisher
Institute of Physics Publishing
Citation
Semiconductor Science and Technology, Vol.31 No.7, p. 073003
Abstract
Flexible electronics are getting a lot of attention for future electronics due to their flexibility and light weight. Flexible electronics are usually fabricated on heat sensitive flexible substrates such as plastic, fabric or even paper. Therefore, the successful fabrication of flexible electronics needs a novel low temperature process development for metal circuit patterning on flexible substrates because the traditional photolithography process usually uses multiple stages of very high temperature steps for metal deposition and patterning and corrosive chemicals. In this paper, the recent novel development based on nanoparticle ink for effective deposition and patterning of high resolution metal patterns on heat sensitive, low cost and light weight plastic substrates at low temperature and in ambient pressure without using any expensive, toxic and time consuming lithographic processes will be reviewed. Nanoparticles exhibit many remarkable characteristics that are significantly different from the bulk counter parts. Nanoparticles shows size dependent melting temperature drop due to the thermodynamics size effect. These novel thermal characteristics of nanoparticles are very important for flexible electronics fabrication process development.
ISSN
0268-1242
URI
https://hdl.handle.net/10371/206911
DOI
https://doi.org/10.1088/0268-1242/31/7/073003
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Related Researcher

  • College of Engineering
  • Department of Mechanical Engineering
Research Area Laser Assisted Patterning, Liquid Crystal Elastomer, Stretchable Electronics, 로보틱스, 스마트 제조, 열공학

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share