Publications

Detailed Information

Systematic biomarker discovery and coordinative validation for different primary nephrotic syndromes using gas chromatography-mass spectrometry

Cited 28 time in Web of Science Cited 28 time in Scopus
Authors

Lee, Jung-Eun; Lee, Yu Ho; Kim, Se-Yun; Kim, Yang Gyun; Moon, Ju-Young; Jeong, Kyung-Hwan; Lee, Tae Won; Ihm, Chun-Gyoo; Kim, Sooah; Kim, Kyoung Heon; Kim, Dong Ki; Kim, Yon Su; Kim, Chan-Duck; Park, Cheol Whee; Lee, Do Yup; Lee, Sang-Ho

Issue Date
2016-07
Publisher
Elsevier BV
Citation
Journal of Chromatography A, Vol.1453, pp.105-115
Abstract
The goal of this study is to identify systematic biomarker panel for primary nephrotic syndromes from urine samples by applying a non-target metabolite profiling, and to validate their utility in independent sampling and analysis by multiplex statistical approaches. Nephrotic syndrome (NS) is a nonspecific kidney disorder, which is mostly represented by minimal change disease (MCD), focal segmental glomerulosclerosis (FSGS), and membranous glomerulonephritis (MGN). Since urine metabolites may mirror disease-specific functional perturbations in kidney injury, we examined urine samples for distinctive metabolic changes to identify biomarkers for clinical applications. We developed unbiased multi component covarianced models from a discovery set with 48 samples (12 healthy controls, 12 MCD, 12 FSGS, and 12 MGN). To extensively validate their diagnostic potential, new batch from 54 patients with primary NS were independently examined a year after. In the independent validation set, the model including citric acid, pyruvic acid, fructose, ethanolamine, and cysteine effectively discriminated each NS using receiver operating characteristic (ROC) analysis except MCD-MGN comparison; nonetheless an additional metabolite multi-composite greatly improved the discrimination power between MCD and MGN. Finally, we proposed the re-constructed metabolic network distinctively dysregulated by the different NSs that may deepen comprehensive understanding of the disease mechanistic, and help the enhanced identification of NS and therapeutic plans for future. (C) 2016 Elsevier B.V. All rights reserved.
ISSN
0021-9673
URI
https://hdl.handle.net/10371/206918
DOI
https://doi.org/10.1016/j.chroma.2016.05.058
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Related Researcher

  • College of Medicine
  • Department of Medicine
Research Area Nephrology, Transplantation, Urology

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share