Publications

Detailed Information

Chronic type 2 diabetes reduces the integrity of the blood-brain barrier by reducing tight junction proteins in the hippocampus

Cited 49 time in Web of Science Cited 55 time in Scopus
Authors

Yoo, Dae Young; Yim, Hee Sun; Jung, Hyo Young; Nam, Sung Min; Kim, Jong Whi; Choi, Jung Hoon; Seong, Je Kyung; Yoon, Yeo Sung; Kim, Dae Won; Hwang, In Koo

Issue Date
2016-06
Publisher
Maruzen Co., Ltd/Maruzen Kabushikikaisha
Citation
Journal of Veterinary Medical Science, Vol.78 No.6, pp.957-962
Abstract
In the present study, we investigated the effects of type 2 diabetes-induced hyperglycemia on the integrity of the blood-brain barrier and tight junction markers in the rat hippocampus. Forty-week-old diabetic (Zucker diabetic fatty, ZDF) rats and littermate control (Zucker lean control, ZLC) rats were used in this study. We evaluated the integrity of the blood-brain barrier by measuring sodium fluorescein extravasation and blood vessel ultrastructure. In addition, tight junction markers, such as zona occludens-1, occludin and claudin-5, were quantified by western blot analysis. ZDF rats showed significantly increased sodium fluorescein leakage in the hippocampus. Tight junction markers, such as occludin and claudin-5, were significantly decreased in the hippocampi of ZDF rats compared to those of ZLC rats. In addition, ZDF rats showed ultrastructural changes with phagocytic findings in the blood vessels. These results suggest that chronic untreated diabetes impairs the permeability of the hippocampal blood-brain barrier by down-regulating occludin and claudin-5, indicating that chronic untreated diabetes may cause hippocampus-dependent dysfunction.
ISSN
0916-7250
URI
https://hdl.handle.net/10371/206927
DOI
https://doi.org/10.1292/jvms.15-0589
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Related Researcher

  • College of Veterinary Medicine
  • Department of Veterinary Medicine
Research Area Metabolic syndrome model construction and omics research, Mouse locomotion and metabolic phenotyping analysis, Study of immune regulatory response in obesity, 대사증후군 모델 구축 및 오믹스 연구, 마우스 운동 및 대사 표현형 분석, 비만에서의 면역 조절 반응 연구

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share