Publications

Detailed Information

The lasso for high dimensional regression with a possible change point

DC Field Value Language
dc.contributor.authorLee, Sokbae-
dc.contributor.authorSeo, Myung Hwan-
dc.contributor.authorShin, Youngki-
dc.date.accessioned2024-08-08T01:38:09Z-
dc.date.available2024-08-08T01:38:09Z-
dc.date.created2018-01-10-
dc.date.created2018-01-10-
dc.date.issued2016-01-
dc.identifier.citationJournal of the Royal Statistical Society. Series B: Statistical Methodology, Vol.78 No.1, pp.193-210-
dc.identifier.issn1369-7412-
dc.identifier.urihttps://hdl.handle.net/10371/207041-
dc.description.abstractWe consider a high dimensional regression model with a possible change point due to a covariate threshold and develop the lasso estimator of regression coefficients as well as the threshold parameter. Our lasso estimator not only selects covariates but also selects a model between linear and threshold regression models. Under a sparsity assumption, we derive non-asymptotic oracle inequalities for both the prediction risk and the l(1)-estimation loss for regression coefficients. Since the lasso estimator selects variables simultaneously, we show that oracle inequalities can be established without pretesting the existence of the threshold effect. Furthermore, we establish conditions under which the estimation error of the unknown threshold parameter can be bounded by a factor that is nearly n(-1) even when the number of regressors can be much larger than the sample size n. We illustrate the usefulness of our proposed estimation method via Monte Carlo simulations and an application to real data.-
dc.language영어-
dc.publisherBlackwell Publishing Inc.-
dc.titleThe lasso for high dimensional regression with a possible change point-
dc.typeArticle-
dc.identifier.doi10.1111/rssb.12108-
dc.citation.journaltitleJournal of the Royal Statistical Society. Series B: Statistical Methodology-
dc.identifier.wosid000368353300010-
dc.identifier.scopusid2-s2.0-84923197416-
dc.citation.endpage210-
dc.citation.number1-
dc.citation.startpage193-
dc.citation.volume78-
dc.description.isOpenAccessY-
dc.contributor.affiliatedAuthorLee, Sokbae-
dc.contributor.affiliatedAuthorSeo, Myung Hwan-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.subject.keywordPlusNONCONCAVE PENALIZED LIKELIHOOD-
dc.subject.keywordPlusQUANTILE REGRESSION-
dc.subject.keywordPlusVARIABLE SELECTION-
dc.subject.keywordPlusADAPTIVE LASSO-
dc.subject.keywordPlusSHRINKAGE-
dc.subject.keywordPlusMODELS-
dc.subject.keywordPlusRATES-
dc.subject.keywordAuthorLasso-
dc.subject.keywordAuthorOracle inequalities-
dc.subject.keywordAuthorSample splitting-
dc.subject.keywordAuthorSparsity-
dc.subject.keywordAuthorThreshold models-
Appears in Collections:
Files in This Item:
There are no files associated with this item.

Related Researcher

  • College of Social Sciences
  • Department of Economics
Research Area Econometrics, Economics, Statistics

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share