Publications
Detailed Information
The impact of poleward moisture and sensible heat flux on arctic winter sea ice variability*
Cited 136 time in
Web of Science
Cited 140 time in Scopus
- Authors
- Issue Date
- 2015-07
- Publisher
- American Meteorological Society
- Citation
- Journal of Climate, Vol.28 No.13, pp.5030-5040
- Abstract
- The surface warming in recent decades has been most rapid in the Arctic, especially during the winter. Here, by utilizing global reanalysis and satellite datasets, it is shown that the northward flux of moisture into the Arctic during the winter strengthens the downward infrared radiation (IR) by 30-40 W m(-2) over 1-2 weeks. This is followed by a decline of up to 10% in sea ice concentration over the Greenland, Barents, and Kara Seas. A climate model simulation indicates that the wind-induced sea ice drift leads the decline of sea ice thickness during the early stage of the strong downward IR events, but that within one week the cumulative downward IR effect appears to be dominant. Further analysis indicates that strong downward IR events are preceded several days earlier by enhanced convection over the tropical Indian and western Pacific Oceans. This finding suggests that sea ice predictions can benefit from an improved understanding of tropical convection and ensuing planetary wave dynamics.
- ISSN
- 0894-8755
- Files in This Item:
- There are no files associated with this item.
Related Researcher
- College of Natural Sciences
- Department of Earth and Environmental Sciences
Item View & Download Count
Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.