Publications

Detailed Information

Quantifying the Summertime Response of the Austral Jet Stream and Hadley Cell to Stratospheric Ozone and Greenhouse Gases

Cited 60 time in Web of Science Cited 60 time in Scopus
Authors

Gerber, Edwin P.; Son, Seok-Woo

Issue Date
2014-07
Publisher
American Meteorological Society
Citation
Journal of Climate, Vol.27 No.14, pp.5538-5559
Abstract
The impact of anthropogenic forcing on the summertime austral circulation is assessed across three climate model datasets: the Chemistry-Climate Model Validation activity 2 and phases 3 and 5 of the Coupled Model Intercomparison Project. Changes in stratospheric ozone and greenhouse gases impact the Southern Hemisphere in this season, and a simple framework based on temperature trends in the lower polar stratosphere and upper tropical troposphere is developed to separate their effects. It suggests that shifts in the jet stream and Hadley cell are driven by changes in the upper-troposphere lower-stratosphere temperature gradient. The mean response is comparable in the three datasets; ozone has chiefly caused the poleward shift observed in recent decades, while ozone and greenhouse gases largely offset each other in the future. The multimodel mean perspective, however, masks considerable spread in individual models' circulation projections. Spread resulting from differences in temperature trends is separated from differences in the circulation response to a given temperature change; both contribute equally to uncertainty in future circulation trends. Spread in temperature trends is most associated with differences in polar stratospheric temperatures, and could be narrowed by reducing uncertainty in future ozone changes. Differences in tropical temperatures are also important, and arise from both uncertainty in future emissions and differences in models' climate sensitivity. Differences in climate sensitivity, however, only matter significantly in a high emissions future. Even if temperature trends were known, however, differences in the dynamical response to temperature changes must be addressed to substantially narrow spread in circulation projections.
ISSN
0894-8755
URI
https://hdl.handle.net/10371/207404
DOI
https://doi.org/10.1175/JCLI-D-13-00539.1
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Related Researcher

  • College of Natural Sciences
  • Department of Earth and Environmental Sciences
Research Area Climate Change, Polar Environmental, Severe Weather, 극지환경, 기후과학, 위험기상

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share