Publications

Detailed Information

In Situ Monitoring of Laser-Assisted Hydrothermal Growth of ZnO Nanowires: Thermally Deactivating Growth Kinetics

Cited 36 time in Web of Science Cited 42 time in Scopus
Authors

In, Jung Bin; Kwon, Hyuk-Jun; Lee, Daeho; Ko, Seung Hwan; Grigoropoulos, Costas P.

Issue Date
2014-02
Publisher
Wiley - V C H Verlag GmbbH & Co.
Citation
Small, Vol.10 No.4, pp.741-749
Abstract
The laser-assisted hydrothermal growth kinetics of a cluster of ZnO nanowires are studied based on optical in situ growth monitoring. The growth yields are orders of magnitude higher than those of conventional hydrothermal methods that use bulk heating. This remarkable improvement is attributed to suppression of precursor depletion occurring by homogeneous growth reactions, as well as to enhanced mass transport. The obtained in situ data show gradually decaying growth kinetics even with negligible precursor consumption. It is revealed that the growth deceleration is caused by thermal deactivation resulting from heat dissipation through the growing nanowires. Finally, it is demonstrated that the tailored temporal modulation of the input power enables sustained growth to extended dimensions. These results provide a key to highly efficient use of growth precursors that has been pursued for industrial use of this functional metal oxide semiconductor.
ISSN
1613-6810
URI
https://hdl.handle.net/10371/207493
DOI
https://doi.org/10.1002/smll.201301599
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Related Researcher

  • College of Engineering
  • Department of Mechanical Engineering
Research Area Laser Assisted Patterning, Liquid Crystal Elastomer, Stretchable Electronics, 로보틱스, 스마트 제조, 열공학

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share