Publications
Detailed Information
Additive or Synergistic Effects of Aluminum on the Reduction of Neural Stem Cells, Cell Proliferation, and Neuroblast Differentiation in the Dentate Gyrus of High-Fat Diet-Fed Mice
Cited 9 time in
Web of Science
Cited 10 time in Scopus
- Authors
- Issue Date
- 2014-01
- Publisher
- Humana Press, Inc.
- Citation
- Biological Trace Element Research, Vol.157 No.1, pp.51-59
- Abstract
- Aluminum is the most plentiful metal on the Earth's crust, and its usage in cooking utensils, cosmetics, drinking containers, food additives, pharmaceutical products, and building materials provides many opportunities for potential aluminum consumption. However, its toxicity is low and harmful effects only develop with large-scale deposition of aluminum. In this study, we investigated the effects of sub-chronic exposure to aluminum (40 mg/kg/day) on neural stem cells, cell proliferation, neuroblast differentiation, and mature neurons in the dentate gyrus of the hippocampus. These experiments were performed in both high-fat diet and low-fat diet-fed C57BL/6J mice via immunohistochemistry using the relevant marker for each cell type, including nestin, Ki67, doublecortin, and NeuN. Subchronic exposure to aluminum in both low-fat and high-fat diet-fed mice reduced neural stem cells, cell proliferation, and neuroblast differentiation without any changes in mature neurons. Furthermore, this reduction effect was exacerbated in high-fat diet-fed mice. These results suggest that aluminum accelerates the reduction of neural stem cells, cell proliferation, and neuroblast differentiation additively or synergistically in high-fat diet-fed mice without any harmful changes in mature neurons.
- ISSN
- 0163-4984
- Files in This Item:
- There are no files associated with this item.
- Appears in Collections:
Item View & Download Count
Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.