Publications
Detailed Information
The global atmospheric circulation response to tropical diabatic heating associated with the Madden-Julian oscillation during northern winter
Cited 156 time in
Web of Science
Cited 158 time in Scopus
- Authors
- Issue Date
- 2012-01
- Publisher
- American Meteorological Society
- Citation
- Journal of the Atmospheric Sciences, Vol.69 No.1, pp.79-96
- Abstract
- The detailed dynamical mechanisms of the upper-tropospheric circulation response to the Madden-Julian oscillation (MJO) convection are examined by integrating a primitive equation model. A series of initial-value calculations with the climatological boreal winter background flow forced by the MJO-like thermal forcing successfully capture the key aspects of the observed circulation response to the MJO convection. This suggests that a large fraction of MJO-related circulation anomalies are direct responses to tropical heating in both the tropics and extratropics and can be largely explained by linear dynamics. It is found that MJO-like dipole heatings not only intensify tropical upper-tropospheric anomalies but also weaken them at certain regions because of the interaction between equatorial Kelvin and Rossby waves. The Rossby wave train primarily excited by horizontal divergence of upper-level perturbation flow propagates northeastward and then heads back to the equator. In this way, Rossby wave activity once generated over the subtropical Indian Ocean tends to enhance the equatorial upper-tropospheric anomalies over the tropical Atlantic and West Africa that have already been created by the zonally propagating equatorial Rossby and Kelvin waves. A ray path tracing reveals that a successive downstream development of Rossby wave train mostly results fromthe large-scale waves with zonal waven umbers 2-3 in the Northern Hemisphere and 3-5 in the Southern Hemisphere. The sensitivity tests show that the overall results are quite robust. It is found, however, that the detailed circulation response to the MJO-like forcing is somewhat sensitive to the background flow. This suggests that MJO-related circulation anomalies may have nonnegligible long-term variability and change as background flow varies. © 2012 American Meteorological Society.
- ISSN
- 0022-4928
- Files in This Item:
- There are no files associated with this item.
Related Researcher
- College of Natural Sciences
- Department of Earth and Environmental Sciences
Item View & Download Count
Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.