Publications

Detailed Information

사각 특징을 추가한 Viola-Jones 물체 검출 알고리즘 : Viola-Jones Object Detection Algorithm Using Rectangular Feature

Cited 0 time in Web of Science Cited 0 time in Scopus
Authors

서지원; 이지은; 곽노준

Issue Date
2012
Publisher
대한전자공학회
Citation
전자공학회논문지 - SP, Vol.49 No.3, pp.18-29
Abstract
실시간 물체 검출에 매우 효과적이라고 알려져 있는 Viola-Jones 알고리즘에서는 약분류기를 구성하기 위해 Haar 모양의특징들을 사용한다. 이러한 Haar 모양 특징은 각각 양의 영역과 음의 영역에 해당하는 두 개 이상의 사각형의 조합으로 구성되며 양의 영역에 해당하는 화소값들의 합과 음의 영역에 해당하는 화소값들의 합의 차에 의하여 특징값을 계산한다. 본 논문에서 새롭게 제안하는 사각 특징은 두 개 이상의 사각 영역으로 구성되는 Haar 모양 특징과는 달리 단일한 사각 영역으로 구성되어 영역 내의 화소값들을 총합과 분산을 특징으로 사용한다. 이러한 사각 특징들을 기존의 Haar 모양 특징과 함께 사용하면 물체의 특징을 인접하는 밝은 영역과 어두운 영역의 조합으로만 선택했던 기존의 방법으로 인해 그동안 배제되어 온 새로운 특징을 선택할 수 있으며 그 결과 계산상의 손실 없이 물체 검출의 성능을 높일 수 있다.
ISSN
1229-6384
URI
https://hdl.handle.net/10371/207911
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Related Researcher

  • Graduate School of Convergence Science & Technology
  • Department of Intelligence and Information
Research Area Feature Selection and Extraction, Object Detection, Object Recognition

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share