Publications

Detailed Information

Common biosynthetic origins for polycyclic tetramate macrolactams from phylogenetically diverse bacteria

Cited 168 time in Web of Science Cited 175 time in Scopus
Authors

Blodgett, Joshua A. V.; Oh, Dong-Chan; Cao, Shugeng; Currie, Cameron R.; Kolter, Roberto; Clardy, Jon

Issue Date
2010-06
Publisher
National Academy of Sciences
Citation
Proceedings of the National Academy of Sciences of the United States of America, Vol.107 No.26, pp.11692-11697
Abstract
A combination of small molecule chemistry, biosynthetic analysis, and genome mining has revealed the unexpected conservation of polycyclic tetramate macrolactam biosynthetic loci in diverse bacteria. Initially our chemical analysis of a Streptomyces strain associated with the southern pine beetle led to the discovery of frontalamides A and B, two previously undescribed members of this antibiotic family. Genome analyses and genetic manipulation of the producing organism led to the identification of the frontalamide biosynthetic gene cluster and several biosynthetic intermediates. The biosynthetic locus for the frontalamides' mixed polyketide/amino acid structure encodes a hybrid polyketide synthase nonribosomal peptide synthetase (PKS-NRPS), which resembles iterative enzymes known in fungi. No such mixed iterative PKS-NRPS enzymes have been characterized in bacteria. Genome-mining efforts revealed strikingly conserved frontalamide-like biosynthetic clusters in the genomes of phylogenetically diverse bacteria ranging from proteobacteria to actinomycetes. Screens for environmental actinomycete isolates carrying frontalamide-like biosynthetic loci led to the isolation of a number of positive strains, the majority of which produced candidate frontalamide-like compounds under suitable growth conditions. These results establish the prevalence of frontalamide-like gene clusters in diverse bacterial types, with medicinally important Streptomyces species being particularly enriched.
ISSN
0027-8424
URI
https://hdl.handle.net/10371/208132
DOI
https://doi.org/10.1073/pnas.1001513107
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Related Researcher

  • College of Pharmacy
  • Department of Manufacturing Pharmacy
Research Area Chemical biology of natural products, Drug discovery from microbial natural products, Study of insect-microbial symbiosis, 미생물 유래 생리활성 천연물 발굴, 천연물 구조 분석

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share