Publications

Detailed Information

Automated volumetric segmentation method for computerizeddiagnosis of pure nodular ground-glass opacity in high-resolution CT

Cited 3 time in Web of Science Cited 8 time in Scopus
Authors

Son, W.; Park, S.J.; Park, C.M.; Goo, J.M.; Kim, J.H.

Issue Date
2010
Publisher
SPIE
Citation
Progress in Biomedical Optics and Imaging - Proceedings of SPIE, Vol.7624
Abstract
While accurate diagnosis of pure nodular ground glass opacity (PNGGO) is important in order to reduce the number of unnecessary biopsies, computer-aided diagnosis of PNGGO is less studied than other types of pulmonary nodules (e.g., solid-type nodule). Difficulty in segmentation of GGO nodules is one of technical bottleneck in the development of CAD of GGO nodules. In this study, we propose an automated volumetric segmentation method for PNGGO using a modeling of ROI histogram with a Gaussian mixture. Our proposed method segments lungs and applies noise-filtering in the pre-processing step. And then, histogram of selected ROI is modeled as a mixture of two Gaussians representing lung parenchyma and GGO tissues. The GGO nodule is then segmented by region-growing technique that employs the histogram model as a probability density function of each pixel belonging to GGO nodule, followed by the elimination of vessel-like structure around the nodules using morphological image operations. Our results using a database of 26 cases indicate that the automated segmentation method have a promising potential. © 2010 SPIE.
ISSN
1605-7422
URI
https://hdl.handle.net/10371/208184
DOI
https://doi.org/10.1117/12.844108
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Related Researcher

  • College of Medicine
  • Department of Medicine
Research Area Radiology

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share