Publications
Detailed Information
LDA를 이용한 얼굴인식에서의 Small Sample Size 문제 해결을 위한 Resampling 방법 : A Resampling Method for Small Sample Size Problems in Face Recognition using LDA
Cited 0 time in
Web of Science
Cited 0 time in Scopus
- Authors
- Issue Date
- 2009
- Publisher
- 대한전자공학회
- Citation
- 전자공학회논문지 - SP, Vol.46 No.2, pp.78-88
- Abstract
- 본 논문에서는 LDA를 이용한 얼굴 인식에서 발생하는 small sample size 문제를 해결하기 위한 효율적인 방법인 resampling 방법을 제안한다. 기존에는 regularization method를 사용하여 small sample size 문제를 해결하였는데, 이 방법을 사용하면 클래스내 분산행렬의 특이성을 없앨 수 있지만, 클래스내 분산행렬과 상수를 곱하는 과정에서 상수 값을 임의로 정해 주어야 하고, 이 상수 값에 따라 인식률이 개선되지 않을 수 있다는 문제점이 발생한다. 제안된 resampling 방법을 이용하여 학습 데이터의 수를 늘리면, regularization method보다 개선된 인식률을 얻을 수 있고, 또한 경험적으로 상수 값을 지정해 주는 과정을 거치지 않아도 되는 장점이 있다.
- ISSN
- 1229-6384
- Files in This Item:
- There are no files associated with this item.
Related Researcher
- Graduate School of Convergence Science & Technology
- Department of Intelligence and Information
Item View & Download Count
Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.