Publications
Detailed Information
Preferred modes of variability and their relationship with climate change
Cited 29 time in
Web of Science
Cited 29 time in Scopus
- Authors
- Issue Date
- 2006
- Publisher
- American Meteorological Society
- Citation
- Journal of Climate, Vol.19 No.10, pp.2063-2075
- Abstract
- Spatial structure of annular modes shows a remarkable resemblance to that of the recent trend in the observed circulation (Thompson et al.). This study performs a series of multilevel primitive equation model simulations to examine the extent to which the annular mode is capable of predicting changes in the zonal-mean flow response to external heat perturbations. Each of these simulations represents a statistically steady state and differs from each other in the values of the imposed tropical heating (H) and high-latitude cooling (C). Defining the annula r mode as the first empirical orthogonal function (EOF1) of zonal-mean tropospheric zonal wind, it is found that the "climate predictability" is generally high in the small C-large H region of the parameter space, but is markedly low in the large C-small H region. In the former region, EOF1 represents meridional meandering of the midlatitude jet, while in the latter region, EOF1 and EOF2 combine to represent coherent poleward propagation of zonal-mean flow anomalies. It is also found that the climate predictability tends to be higher with respect to changes in C than to changes in H. The implications of these findings for the Southern Hemisphere climate predictability are also presented. © 2006 American Meteorological Society.
- ISSN
- 0894-8755
- Files in This Item:
- There are no files associated with this item.
Related Researcher
- College of Natural Sciences
- Department of Earth and Environmental Sciences
Item View & Download Count
Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.