Publications

Detailed Information

Damage-free low temperature pulsed laser printing of gold nanoinks on polymers

Cited 55 time in Web of Science Cited 70 time in Scopus
Authors

Chung, J; Ko, S; Grigoropoulos, CP; Bieri, NR; Dockendorf, C; Poulikakos, D

Issue Date
2005-07
Publisher
ASME
Citation
Journal of Heat Transfer, Vol.127 No.7, pp.724-732
Abstract
In this study, pulsed laser based curing of a printed nanoink (nanoparticle ink) combined with moderate and controlled substrate heating was investigated to create microconductors at low enough temperatures appropriate for polymeric substrates. The present work relies on (1) the melting temperature depression of nanoparticles smaller than a critical size, (2) DOD (drop on demand) jettability of nanoparticle ink, and (3) control of the heat affected zone induced by pulsed laser heating. In the experiments, gold nanoparticles of 3-7 nm diameter dissolved in toluene solvent were used as ink. This nanoink was printed on a polymeric substrate that was heated to evaporate the solvent during or after printing. The overall morphology of the gold microline was determined by the printing process and controlled by changing the substrate temperature during jetting. In addition, the printed line width of about 140 mu m at the room temperature decreased to 70-80 mu m when the substrate is heated at 90 degrees C. By employing a microsecond pulsed laser, the nanoparticles were melted and coalesced at low temperature to form a conductive microline which had just 3-4 times higher resistivity than the bulk value without damaging the temperature sensitive polymeric substrate. This gold film also survived after Scotch tape test. These are remarkable results, considering the fact that the melting temperature of bulk gold is 1064 degrees C and the polymeric substrate can be thermally damaged at temperatures as low as 500 degrees C.
ISSN
0022-1481
URI
https://hdl.handle.net/10371/208578
DOI
https://doi.org/10.1115/1.1924627
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Related Researcher

  • College of Engineering
  • Department of Mechanical Engineering
Research Area Laser Assisted Patterning, Liquid Crystal Elastomer, Stretchable Electronics, 로보틱스, 스마트 제조, 열공학

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share