Publications

Detailed Information

Proteomic analysis and molecular characterization of tissue ferritin light chain in hepatocellular carcinoma

Cited 100 time in Web of Science Cited 123 time in Scopus
Authors

Park, Kang-Sik; Kim, Hoguen; Kim, Nam-Gyun; Cho, Sang Yun; Choi, Kun-Ho; Seong, Je Kyung; Paik, Young-Ki

Issue Date
2002-06
Publisher
John Wiley & Sons Inc.
Citation
Hepatology, Vol.35 No.6, pp.1459-1466
Abstract
To investigate a molecular basis for iron depletion in human hepatocellular carcinoma (HCC), 19 cases of HCC were analyzed by two-dimensional electrophoresis (2DE) and matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS). Results were compared with those of paired adjacent nontumorous liver tissues. Comparative analysis of the respective spot patterns in 2DE showed that tissue ferritin light chain (T-FLC), an iron-storage protein, was either severely suppressed or reduced to undetectable levels in HCC, which was further supported by Western blot and immunohistochemical analysis. In contrast, transferrin receptor (TfR) was shown to be overexpressed in the same HCC samples. Interestingly, the relative levels of messenger RNA (mRNA) expression of T-FLC in HCC, which were measured by a real-time quantitative reverse-transcription polymerase chain reaction (PCR), exhibited almost the same levels as those in normal tissues, suggesting that the translational or posttranslational modification of T-FLC may be the cause of T-FLC suppression in HCC. Furthermore, with PCR-based loss of heterozygosity analysis, only 1 of 19 HCCs showed chromosomal deletions at 19q13.3-q13.4 where T-FLC is located, indicating that the suppression of T-FLC is unlikely due to structural genomic changes with HCC. In conclusion, both proteomic and genomic evidence support not only a basis for the suppression of T-FLC in HCC but also provide a new clue to the unresolved question of iron depletion during hepatocarcinogenesis.
ISSN
0270-9139
URI
https://hdl.handle.net/10371/208734
DOI
https://doi.org/10.1053/jhep.2002.33204
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Related Researcher

  • College of Veterinary Medicine
  • Department of Veterinary Medicine
Research Area Metabolic syndrome model construction and omics research, Mouse locomotion and metabolic phenotyping analysis, Study of immune regulatory response in obesity, 대사증후군 모델 구축 및 오믹스 연구, 마우스 운동 및 대사 표현형 분석, 비만에서의 면역 조절 반응 연구

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share