Publications

Detailed Information

Adaptive concentrations of hydrogen peroxide suppress cell death by blocking the activation of SAPK/JNK pathway

Cited 43 time in Web of Science Cited 48 time in Scopus
Authors

Kim, Do Kyun; Cho, Eun Sook; Seong, Je Kyung; Um, Hong Duck

Issue Date
2001-12
Publisher
The Company of Biologists Ltd.
Citation
Journal of Cell Science, Vol.114 No.23, pp.4329-4334
Abstract
Low levels of H2O2 can induce cellular resistance to subsequent higher levels of H2O2. By using human U937 leukemia cells, it was previously shown that such an adaptive response can be induced without increasing the cellular capacity to degrade H2O2, thus conferring on the cells a cross-resistance to other stimuli such as serum withdrawal and C2-ceramide. In this study, it was found that stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) acts as a common mediator of the cell death induced by high H2O2 concentrations, serum withdrawal and C2-ceramide. Although SAPK/JNK activation by H2O2 was mediated by two upstream mitogen-activated protein kinase (MAPK) kinases MKK4 and MKK7, only MKK7 played such a role in serum withdrawal and C2-ceramide. Interestingly, all these lethal stimuli failed to activate SAPK/JNK and its upstream kinases in the cells that were pretreated with low adaptive concentrations of H2O2. By contrast, the phosphorylation levels of extracellular signal-regulated kinase and p38 MAPK were not significantly influenced by this H2O2 pretreatment. Inducing the SAPK/JNK-suppressing effect of H2O2 required a time lag, which correlated with the time lag required for the induction of the adaptive response. Overall, the results suggest that H2O2 adaptation confers on cells a resistance to multiple stimuli by specifically blocking their ability to activate the SAPK/JNK pathways.
ISSN
0021-9533
URI
https://hdl.handle.net/10371/208760
DOI
https://doi.org/10.1242/jcs.114.23.4329
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Related Researcher

  • College of Veterinary Medicine
  • Department of Veterinary Medicine
Research Area Metabolic syndrome model construction and omics research, Mouse locomotion and metabolic phenotyping analysis, Study of immune regulatory response in obesity, 대사증후군 모델 구축 및 오믹스 연구, 마우스 운동 및 대사 표현형 분석, 비만에서의 면역 조절 반응 연구

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share