Publications

Detailed Information

Computerized Texture Analysis of Persistent Part-Solid Ground-Glass Nodules: Differentiation of Preinvasive Lesions from Invasive Pulmonary Adenocarcinomas

Cited 183 time in Web of Science Cited 200 time in Scopus
Authors

Chae, Hee-Dong; Park, Chang Min; Park, Sang Joon; Lee, Sang Min; Kim, Kwang Gi; Goo, Jin Mo

Issue Date
2014-10
Publisher
Radiological Society of North America
Citation
Radiology, Vol.273 No.1, pp.285-293
Abstract
Purpose: To retrospectively investigate the value of computerized three-dimensional texture analysis for differentiation of preinvasive lesions from invasive pulmonary adenocarcinomas (IPAs) that manifest as part-solid ground-glass nodules (GGNs). Materials and Methods: The institutional review board approved this retrospective study with a waiver of patients' informed consent. The study consisted of 86 patients with 86 pathologic analysis-confirmed part-solid GGNs (mean size, 16 mm 6 5.4 [standard deviation]) who had undergone computed tomographic (CT) imaging between January 2005 and October 2011. Each part-solid GGN was manually segmented and its computerized texture features were quantitatively extracted by using an in-house software program. Multivariate logistic regression analysis was performed to investigate the differentiating factors of preinvasive lesions from IPAs. Three-layered artificial neural networks (ANNs) with a back-propagation algorithm and receiver operating characteristic curve analysis were used to build a discriminating model with texture features and to evaluate its discriminating performance. Results: Pathologic analysis confirmed 58 IPAs (seven minimally invasive adenocarcinomas and 51 invasive adenocarcinomas) and 28 preinvasive lesions (four atypical adenomatous hyperplasias and 24 adenocarcinomas in situ). IPAs and preinvasive lesions exhibited significant differences in various histograms and volumetric parameters (P < .05). Multivariate analysis revealed that smaller mass (adjusted odds ratio, 0.092) and higher kurtosis (adjusted odds ratio, 3.319) are significant differentiators of preinvasive lesions from IPAs (P < .05). With mean attenuation, standard deviation of attenuation, mass, kurtosis, and entropy, the ANNs model showed excellent accuracy in differentiation of preinvasive lesions from IPAs (area under the curve, 0.981). Conclusion: In part-solid GGNs, higher kurtosis and smaller mass are significant differentiators of preinvasive lesions from IPAs, and preinvasive lesions can be accurately differentiated from IPAs by using computerized texture analysis. (C) RSNA, 2014
ISSN
0033-8419
URI
https://hdl.handle.net/10371/209008
DOI
https://doi.org/10.1148/radiol.14132187
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Related Researcher

  • College of Medicine
  • Department of Medicine
Research Area Radiology

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share