Publications

Detailed Information

Single atom catalysts for water electrolysis: from catalyst-coated substrate to catalyst-coated membrane

Cited 0 time in Web of Science Cited 8 time in Scopus
Authors

Lee, Sol A.; Jun, Sang Eon; Park, Sun Hwa; Kwon, Ki Chang; Kang, Jong Hun; Kwon, Min Sang; Jang, Ho Won

Issue Date
2024-01
Publisher
The Royal Society of Chemistry
Citation
EES Catalysis, Vol.2 No.1, pp.49-70
Abstract
Green hydrogen production through water electrolysis is considered the next-generation technology capable of industrial-scale hydrogen production to achieve carbon neutrality. The core of constructing a water electrolyzer lies in designing the membrane electrode assembly (MEA) with optimal integration of the membrane, electrocatalysts, and gas diffusion layer. Among the two representative MEA fabrication methods, catalyst-coated substrates (CCS) and catalyst-coated membranes (CCM), CCM shows great promise due to its catalyst layer/membrane interface contact and scalability. The key factor in the CCM method is the effective application of the powdered catalyst onto the membrane. In this respect, the utilization of single-atom catalysts (SACs) has emerged as a noteworthy focus due to their unprecedented catalytic activity resulting from unique electronic/atomic configurations and high atomic utilization efficiency. Incorporating SACs into CCM–MEA has the potential to be a cutting-edge water electrolysis technology. However, it is still in its infancy due to the instability of the components (SACs, membranes, ionomers, supports) and degradation during the SACs–CCM–MEA fabrication and cell operation. Herein, we outline the representative fabrication method of MEA and provide a comprehensive analysis of SACs applicable to MEA. Then, we discuss the advantages of SACs–CCM–MEA and the challenges for industrial hydrogen production. Finally, this review concludes with future perspectives on the development of single-atom catalyst-coated membranes and the expected achievements.
ISSN
2753-801X
URI
https://hdl.handle.net/10371/209179
DOI
https://doi.org/10.1039/d3ey00165b
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Related Researcher

  • College of Engineering
  • School of Chemical and Biological Engineering
Research Area Conversion of Methane into Aromatics, Waste Plastic Refinery, Zeolite Synthesis

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share