Publications

Detailed Information

Ferromagnetic stability optimization via oxygen-vacancy control in single-atom Co/TiO2 nanostructures

DC Field Value Language
dc.contributor.authorPaidi, Vinod K.-
dc.contributor.authorLee, Byoung-Hoon-
dc.contributor.authorLee, Alex Taekyung-
dc.contributor.authorIsmail-Beigi, Sohrab-
dc.contributor.authorGrishaeva, Elizaveta-
dc.contributor.authorVasala, Sami-
dc.contributor.authorGlatzel, Pieter-
dc.contributor.authorKo, Wonjae-
dc.contributor.authorAhn, Docheon-
dc.contributor.authorHyeon, Taeghwan-
dc.contributor.authorKim, Younghak-
dc.contributor.authorLee, Kug-Seung-
dc.date.accessioned2024-12-11T06:04:25Z-
dc.date.available2024-12-11T06:04:25Z-
dc.date.created2024-12-11-
dc.date.created2024-12-11-
dc.date.issued2024-11-
dc.identifier.citationProceedings of the National Academy of Sciences of the United States of America, Vol.121 No.48, p. e2409397121-
dc.identifier.issn0027-8424-
dc.identifier.urihttps://hdl.handle.net/10371/213551-
dc.description.abstractOxygen vacancies and their correlation with the nanomagnetism and electronic structure are crucial for applications in dilute magnetic semiconductors design applications. Here, we report on cobalt single atom-incorporated titanium dioxide (TiO2) monodispersed nanoparticles synthesized using a thermodynamic redistribution strategy. Using advanced synchrotron-based X-ray techniques and simulations, we find trivalent titanium is absent, indicating trivalent cations do not influence ferromagnetic (FM) stability. Density functional theory calculations show that the FM stability between Co2+ ions is very weak. However, electron doping from additional oxygen vacancies can significantly enhance this FM stability, which explains the observed room-temperature ferromagnetism. Moreover, our calculations illustrate enhanced FM interactions between CoTi + VO complexes with additional oxygen vacancies. This study explores the electronic structure and room-temperature ferromagnetism using monodispersed nanocrystallites with single-atom-incorporated TiO2 nanostructures. The strategies described herein offer promise in revealing magnetism in other single-atom-incorporated nanostructures.-
dc.language영어-
dc.publisherNational Academy of Sciences-
dc.titleFerromagnetic stability optimization via oxygen-vacancy control in single-atom Co/TiO2 nanostructures-
dc.typeArticle-
dc.identifier.doi10.1073/pnas.2409397121-
dc.citation.journaltitleProceedings of the National Academy of Sciences of the United States of America-
dc.identifier.wosid001369446500002-
dc.identifier.scopusid2-s2.0-85210049671-
dc.citation.number48-
dc.citation.startpagee2409397121-
dc.citation.volume121-
dc.description.isOpenAccessY-
dc.contributor.affiliatedAuthorHyeon, Taeghwan-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.subject.keywordPlusX-RAY-ABSORPTION-
dc.subject.keywordPlusTITANIUM-
dc.subject.keywordPlusTIO2-
dc.subject.keywordPlusSPECTROSCOPY-
dc.subject.keywordPlusSURFACE-
dc.subject.keywordPlusCE3+-
dc.subject.keywordAuthoroxygen vacancy-
dc.subject.keywordAuthorroom-temperature ferromagnetism-
dc.subject.keywordAuthorsingle-atom-incorporated TiO2 nanostructures-
Appears in Collections:
Files in This Item:
There are no files associated with this item.

Related Researcher

  • College of Engineering
  • School of Chemical and Biological Engineering
Research Area Chemistry, Materials Science

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share