Browse

Homeostatic imbalance between apoptosis and cell renewal in the liver of premature aging Xpd mice

DC Field Value Language
dc.contributor.authorPark, Jung Yoon-
dc.contributor.authorCho, Mi-Ook-
dc.contributor.authorLeonard, Shanique-
dc.contributor.authorCalder, Brent-
dc.contributor.authorMian, I. Saira-
dc.contributor.authorWijnhoven, Susan-
dc.contributor.authorSteeg, Harry van-
dc.contributor.authorMitchell, James-
dc.contributor.authorKim, Woo Ho-
dc.contributor.authorHorst, Gijsbertus T.J, van der-
dc.contributor.authorHoeijmakers, Jan-
dc.contributor.authorCohen, Pinchas-
dc.contributor.authorVijg, Jan-
dc.contributor.authorSuh, Yousin-
dc.date.accessioned2009-05-27T01:19:19Z-
dc.date.available2009-05-27T01:19:19Z-
dc.date.issued2008-06-11-
dc.identifier.citationPLoS ONE 3(6): e2346en
dc.identifier.issn1932-6203-
dc.identifier.urihttp://www.plosone.org-
dc.identifier.urihttps://hdl.handle.net/10371/3893-
dc.description.abstractUnrepaired or misrepaired DNA damage has been implicated as a causal factor in cancer and aging. Xpd(TTD) mice, harboring defects in nucleotide excision repair and transcription due to a mutation in the Xpd gene (R722W), display severe symptoms of premature aging but have a reduced incidence of cancer. To gain further insight into the molecular basis of the mutant-specific manifestation of age-related phenotypes, we used comparative microarray analysis of young and old female livers to discover gene expression signatures distinguishing Xpd(TTD) mice from their age-matched wild type controls. We found a transcription signature of increased apoptosis in the Xpd(TTD) mice, which was confirmed by in situ immunohistochemical analysis and found to be accompanied by increased proliferation. However, apoptosis rate exceeded the rate of proliferation, resulting in homeostatic imbalance. Interestingly, a metabolic response signature was observed involving decreased energy metabolism and reduced IGF-1 signaling, a major modulator of life span. We conclude that while the increased apoptotic response to endogenous DNA damage contributes to the accelerated aging phenotypes and the reduced cancer incidence observed in the Xpd(TTD) mice, the signature of reduced energy metabolism is likely to reflect a compensatory adjustment to limit the increased genotoxic stress in these mutants. These results support a general model for premature aging in DNA repair deficient mice based on cellular responses to DNA damage that impair normal tissue homeostasis.en
dc.description.sponsorshipThis work was supported by grants from the US National Institute of Health (RO1 AG024391 and RO3 AG023292) awarded to YS, and (PO1 AG17242, RO1AG20438, UO1ES11044) awarded to JV.en
dc.language.isoenen
dc.publisherPublic Library of Scienceen
dc.titleHomeostatic imbalance between apoptosis and cell renewal in the liver of premature aging Xpd miceen
dc.typeArticleen
dc.contributor.AlternativeAuthor박정윤-
dc.contributor.AlternativeAuthor조미옥-
dc.contributor.AlternativeAuthor김우호-
dc.contributor.AlternativeAuthor서유신-
dc.identifier.doi10.1371/journal.pone.0002346-
Appears in Collections:
College of Medicine/School of Medicine (의과대학/대학원)Pathology (병리학전공)Journal Papers (저널논문_병리학전공)
Files in This Item:
  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse