H2O-controlled synthesis of TiO2 with nanosized channel structure through in situ esterification and its application to photocatalytic oxidation

Cited 12 time in Web of Science Cited 9 time in Scopus

Oh, Song-Taek; Choi, Jae-Suk; Lee, Han-Su; Lu, Lianhai; Kwon, Heock-Hoi; Song, In Kyu; Kim, Jae Jeong; Lee, Ho-In

Issue Date
Journal of Molecular Catalysis A: Chemical 267 (2007) 112–119
TiO2PhotocatalysisIn situ esterificationPolyethylene glycol2-Isopropyl-6-methyl-4-pyrimidinol
TiO2 with a characteristic nanosized channel structure was synthesized by the sol–gel reaction of a titanium precursor with water produced from
the in situ esterification of acetic acid and polymers containing hydroxyl groups. Several polymers including polyethylene glycol, Pluronic P123,
and Tween 20 were used in these reactions to optimize the resulting surface area and pore size. The prepared samples were characterized by X-ray
diffraction, N2 adsorption, thermogravimetric analysis, infrared spectroscopy, and field emission-scanning electron microscopy, and evaluated for
photocatalytic decomposition of two hazardous compounds.
Contrary to the anisotropic structure of TiO2 when prepared with considerable amounts of water, TiO2 synthesized through in situ esterification
had a relatively large and regular channel structure that originated from the inorganic–organic network that formed between template molecules and
Ti species. This inorganic–organic network seemed to be induced by hydrolysis of the Ti precursor with the small amount of H2O produced from
the esterification reaction. The effect of the type and quantity of polymer on the structural properties of the synthesized TiO2 was also elucidated.
The relationship between the structural properties and the photocatalytic activities of the TiO2 was investigated by studying the photodecomposition
of probe materials with various molecular sizes. Photodecomposition of 2-isopropyl-6-methyl-4-pyrimidinol, a pyrimidine derivative, was
limited by the TiO2 channel size because its large molecular size restricted its diffusion into the TiO2 channel. On the other hand, cyanide, with its
relatively small molecular size, was effectively decomposed by TiO2 photocatalysis, and the decomposition activity was proportional to the TiO2
surface area regardless of the channel size.
Files in This Item:
There are no files associated with this item.
Appears in Collections:
College of Engineering/Engineering Practice School (공과대학/대학원)Dept. of Chemical and Biological Engineering (화학생물공학부)Journal Papers (저널논문_화학생물공학부)
  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.