Browse

Balancing Uplink and Downlink under Asymmetric Traffic Environments Using Distributed Receive Antennas

DC Field Value Language
dc.contributor.authorSohn, Illsoo-
dc.contributor.authorLee, Byong Ok-
dc.contributor.authorLee, Kwang Bok-
dc.date.accessioned2009-08-21T08:40:59Z-
dc.date.available2009-08-21T08:40:59Z-
dc.date.issued2008-10-
dc.identifier.citationIEICE Trans. Commun., vol.E91-B, no.10, pp.3141-3148, Oct. 2008en
dc.identifier.issn0916-8516-
dc.identifier.urihttp://search.ieice.org/bin/summary.php?id=e91-b_10_3141&category=B-
dc.identifier.urihttps://hdl.handle.net/10371/7482-
dc.description.abstractRecently, multimedia services are increasing with the widespread use of various wireless applications such as web brosers, real-time video, and interactive games, which results in traffic asymmetry between the uplink and downlink. Hence, time division duplex (TDD) systems which provide advantages in efficient bandwidth utilization under asymmetric traffic environments have become one of the most important issues in future mobile cellular systmes. It is known that two types of intercell interference, referred to as crossed-slot interference, additionally arise in TDD systems; the performances of the uplink and downlink transmissions are degraded by BS-to-BS crossed-slot interference and MS-to-MS crossed-slot interference, respectively. The resulting performance unbalance between the uplink and downlink makes network deployment severely inefficient. Previous works have proposed intelligent time slot allocation algorithms t0 mitigate the corssed-slot interference problem. However, they require centralized control, which causes large signaling overhead in the network. In this paer, we propose to change the shape of the cellular structure itself. The conventional cellular structure is easily transformed into the proposed cellular structure with distributed receive antennas (DRAs). We set up statistical Markov chain traffic model and analyze the bit error performances of the conventional cellular structure and proposed cellular structure under asymmetric traffic environments. Numerical results show that the uplink and downlink performances of the proposed cellular structure become balanced with the proper number of DRAs and thus the proposed cellular structure is notably cost-effective in network deployment compared to the conventional cellular structure. As a result, extending the conventional cellular strucuture into the poposed cellular structure with DRAs is a remarkably cost-effective solution to support asymmetric traffic environments in future mobile cellular systems.en
dc.description.sponsorshipThis work was supported by the Korea Science and Engineering Foundation (KOSEF) through the National Research Lab. (NRL) Program funded by the Ministry of Science and Technology (No. M10300000316-06J0000-31610)en
dc.language.isoen-
dc.publisherInstitute of Electronics, Information and Communication Engineers (IEICE)en
dc.subjectTDDen
dc.subjectasymmetric trafficen
dc.subjectcrossed-slot interferenceen
dc.subjectdistributed antenna systemen
dc.subjectWCDMAen
dc.subjectIEEE802.16een
dc.subjectWiBroen
dc.titleBalancing Uplink and Downlink under Asymmetric Traffic Environments Using Distributed Receive Antennasen
dc.typeArticleen
dc.contributor.AlternativeAuthor손일수-
dc.contributor.AlternativeAuthor이병옥-
dc.contributor.AlternativeAuthor이광복-
Appears in Collections:
College of Engineering/Engineering Practice School (공과대학/대학원)Dept. of Computer Science and Engineering (컴퓨터공학부)Journal Papers (저널논문_컴퓨터공학부)
Files in This Item:
There are no files associated with this item.
  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse