Publications

Detailed Information

Effects of particle dipole interaction on the ac magnetically induced heating characteristics of ferrite nanoparticles for hyperthermia

DC Field Value Language
dc.contributor.authorJeun, Minhong-
dc.contributor.authorBae, Seongtae-
dc.contributor.authorTomitaka, Asahi-
dc.contributor.authorTakemura, Yasushi-
dc.contributor.authorPaek, Sun Ha-
dc.contributor.authorChung, Kyung-Won-
dc.contributor.authorPark, Ki Ho-
dc.date.accessioned2012-06-13T06:31:28Z-
dc.date.available2012-06-13T06:31:28Z-
dc.date.issued2009-08-24-
dc.identifier.citationAPPLIED PHYSICS LETTERS; Vol.95 8; 082501ko_KR
dc.identifier.issn0003-6951-
dc.identifier.urihttps://hdl.handle.net/10371/77033-
dc.description.abstractMagnetic particle dipole interaction was revealed as a crucial physical parameter to be considered in optimizing the ac magnetically induced heating characteristics of magnetic nanoparticles. The ac heating temperature of soft MFe(2)O(4) (M=Mg,Ni) nanoparticles was remarkably increased from 17.6 to 94.7 degrees C (MgFe(2)O(4)) and from 13.1 to 103.1 degrees C (NiFe(2)O(4)) by increasing the particle dipole interaction energy at fixed ac magnetic field of 140 Oe and frequency of 110 kHz. The increase in "magnetic hysteresis loss" that resulted from the particle dipole interaction was the main physical reason for the significant improvement of ac heating characteristics.ko_KR
dc.language.isoenko_KR
dc.publisherAMER INST PHYSICSko_KR
dc.titleEffects of particle dipole interaction on the ac magnetically induced heating characteristics of ferrite nanoparticles for hyperthermiako_KR
dc.typeArticleko_KR
dc.contributor.AlternativeAuthor전민홍-
dc.contributor.AlternativeAuthor배성태-
dc.contributor.AlternativeAuthor박기호-
dc.contributor.AlternativeAuthor백선하-
dc.contributor.AlternativeAuthor정경원-
dc.identifier.doi10.1063/1.3211120-
dc.citation.journaltitleAPPLIED PHYSICS LETTERS-
dc.description.citedreferenceHosono T, 2009, J MAGN MAGN MATER, V321, P3019, DOI 10.1016/j.jmmm.2009.04.061-
dc.description.citedreferenceBae S, 2009, IEEE T NANOTECHNOL, V8, P86, DOI 10.1109/TNANO.2008.2007214-
dc.description.citedreferenceGOLDMAN A, 2006, MODERN FERRITE TECHN-
dc.description.citedreferenceMaehara T, 2005, J MATER SCI, V40, P135, DOI 10.1007/s10853-005-5698-x-
dc.description.citedreferencePankhurst QA, 2003, J PHYS D APPL PHYS, V36, pR167, DOI 10.1088/0022-3727/36/13/201-
dc.description.citedreferenceRosensweig RE, 2002, J MAGN MAGN MATER, V252, P370-
dc.description.citedreferencePoddar P, 2002, PHYS REV B, V66, DOI 10.1103/PhysRevB.66.060403-
dc.description.citedreferenceMoroz P, 2002, INT J HYPERTHER, V18, P267, DOI 10.1080/02656730110108785-
dc.description.citedreferenceJordan A, 1999, J MAGN MAGN MATER, V201, P413-
dc.description.citedreferenceFANNIN PC, 1991, J PHYS D APPL PHYS, V24, P76, DOI 10.1088/0022-3727/24/1/013-
dc.description.citedreferenceWILLIAM M, 1985, THEORETICAL SOLID ST-
dc.description.citedreferenceOLESON JR, 1983, INT J RADIAT ONCOL, V9, P549-
dc.description.citedreferenceGILCHRIST RK, 1957, ANN SURG, V146, P596-
dc.description.citedreferenceJACOBS IS, 1955, PHYS REV, V100, P1060-
dc.description.tc7-
Appears in Collections:
Files in This Item:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share