Publications

Detailed Information

An Active Part of Artemisia sacrorum Ledeb. Attenuates Hepatic Lipid Accumulation through Activating AMP-Activated Protein Kinase in Human HepG2 Cells

DC Field Value Language
dc.contributor.authorYuan, Hai-Dan-
dc.contributor.authorYuan, Hai-Ying-
dc.contributor.authorChung, Sung-Hyun-
dc.contributor.authorJin, Guang-Zhu-
dc.contributor.authorPiao, Guang-Chun-
dc.date.accessioned2012-06-26T06:22:13Z-
dc.date.available2012-06-26T06:22:13Z-
dc.date.issued2010-02-
dc.identifier.citationBIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY; Vol.74 2; 322-328ko_KR
dc.identifier.issn0916-8451-
dc.identifier.urihttps://hdl.handle.net/10371/77456-
dc.description.abstractArtemisia sacrorum Ledeb. (Compositae) (ASL) is a traditional Chinese medicine used to treat different hepatic diseases. However, a hypolipidemic effect of ASL on fatty liver disease has not been reported. Therefore, we investigated whether 95% ethanol eluate (EE), an active part of ASL, would attenuate hepatic lipid accumulation in human HepG2 cells by activating AMP-activated protein kinase (AMPK). Significant decreases in triglyceride levels and increases in AMPK and acetyl-CoA carboxylase (ACC) phosphorylation were observed when the cells were treated with 95% EE. EE down-regulated the lipogenesis gene expression of sterol regulatory element-binding protein 1c (SREBP1c) and its target genes, such as fatty acid synthase (FAS) and stearoyl-CoA desaturase 1 (SCD1), in a time- and dose-dependent manner. In contrast, the lipolytic gene expression of peroxisome proliferator-activated receptor alpha (PPAR-alpha) and CD36 increased in a time- and dose-dependent manner. These effects were abolished by pretreatment with compound C, an AMPK inhibitor. However, there were no differences in the gene expression of SREBP2, low density lipoprotein receptor (LDLR), hydroxymethyl glutaryl CoA reductase (HMG-CoA), or glucose transporter 2 (GLUT2). At the same time, 95% EE significantly increased the gene expression of acyl CoA oxidase (ACOX) in a time- and dose-dependent manner. Thus, AMPK mediated 95% EE induced suppression of SREBP1c and activation of PPAR-a respectively. These finding indicate that 95% EE attenuates hepatic lipid accumulation through AMPK activation and may be active in the prevention of serious diseases such as fatty liver, obesity, and type-2 diabetic mellitus.ko_KR
dc.language.isoenko_KR
dc.publisherJAPAN SOC BIOSCI BIOTECHN AGROCHEMko_KR
dc.subjectArtemisia sacrorum Ledebko_KR
dc.subjectAMP-activated protein kinaseko_KR
dc.subjectHepG2 cellsko_KR
dc.titleAn Active Part of Artemisia sacrorum Ledeb. Attenuates Hepatic Lipid Accumulation through Activating AMP-Activated Protein Kinase in Human HepG2 Cellsko_KR
dc.typeArticleko_KR
dc.contributor.AlternativeAuthor정성현-
dc.identifier.doi10.1271/bbb.90651-
dc.citation.journaltitleBIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY-
dc.description.citedreferenceYuan HD, 2009, BIOL PHARM BULL, V32, P1683-
dc.description.citedreferenceNozaki Y, 2009, J HEPATOL, V51, P548, DOI 10.1016/j.jhep.2009.05.017-
dc.description.citedreferenceYuan HW, 2009, J HEPATOL, V51, P535, DOI 10.1016/j.jhep.2009.03.026-
dc.description.citedreferenceTung YT, 2009, FOOD CHEM TOXICOL, V47, P1385, DOI 10.1016/j.fct.2009.03.021-
dc.description.citedreferenceViollet B, 2009, ACTA PHYSIOL, V196, P81, DOI 10.1111/j.1748-1716.2009.01970.x-
dc.description.citedreferenceTessari P, 2009, NUTR METAB CARDIOVAS, V19, P291, DOI 10.1016/j.numecd.2008.12.015-
dc.description.citedreferenceAwazawa M, 2009, BIOCHEM BIOPH RES CO, V382, P51, DOI 10.1016/j.bbrc.2009.02.131-
dc.description.citedreferenceGu XM, 2009, FEBS J, V276, P1450, DOI 10.1111/j.1742-4658.2009.06886.x-
dc.description.citedreferenceKim DY, 2009, J AGR FOOD CHEM, V57, P1532, DOI 10.1021/jf802867b-
dc.description.citedreferencePark KG, 2008, HEPATOLOGY, V48, P1477, DOI 10.1002/hep.22496-
dc.description.citedreferenceLi HB, 2008, EUR J PHARMACOL, V588, P165, DOI 10.1016/j.ejphar.2008.04.036-
dc.description.citedreferenceBen Sahra I, 2008, ONCOGENE, V27, P3576, DOI 10.1038/sj.onc.1211024-
dc.description.citedreferenceChoi SS, 2008, CURR OPIN LIPIDOL, V19, P295, DOI 10.1097/MOL.0b013e3282ff5e55-
dc.description.citedreferenceKohjima M, 2008, INT J MOL MED, V21, P507-
dc.description.citedreferenceLin CL, 2007, J LIPID RES, V48, P2334, DOI 10.1194/jlr.M700128-JLR200-
dc.description.citedreferenceYin HQ, 2007, TOXICOL APPL PHARM, V223, P225, DOI 10.1016/j.taap.2007.06.018-
dc.description.citedreferenceBrusq JM, 2006, J LIPID RES, V47, P1281, DOI 10.1194/jlr.M600020-JLR200-
dc.description.citedreferenceBurkhardt BR, 2005, FEBS LETT, V579, P5759, DOI 10.1016/j.febslet.2005.09.060-
dc.description.citedreferenceGloerich J, 2005, J LIPID RES, V46, P716, DOI 10.1194/jlr.M400337-JLR200-
dc.description.citedreferenceHardie DG, 2004, J CELL SCI, V117, P5479, DOI 10.1242/jcs.01540-
dc.description.citedreferenceHardie DG, 2003, FEBS LETT, V546, P113, DOI 10.1016/S0014-5793(03)00560-X-
dc.description.citedreferenceHorton JD, 2002, J CLIN INVEST, V109, P1125, DOI 10.1172/JCI200215593-
dc.description.citedreferenceSchuppan D, 1999, HEPATOLOGY, V30, P1099-
dc.description.citedreferenceHardie DG, 1998, ANNU REV BIOCHEM, V67, P821-
dc.description.citedreferenceHardie DG, 1997, EUR J BIOCHEM, V246, P259-
dc.description.citedreferenceHENIN N, 1995, FASEB J, V9, P541-
dc.description.citedreferenceHA J, 1994, J BIOL CHEM, V269, P22162-
dc.description.tc2-
Appears in Collections:
Files in This Item:
There are no files associated with this item.

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share