Publications

Detailed Information

Development of Microelectrode Arrays for Artificial Retinal Implants Using Liquid Crystal Polymers

DC Field Value Language
dc.contributor.authorLee, Seung Woo-
dc.contributor.authorSeo, Jong-Mo-
dc.contributor.authorHa, Seungmin-
dc.contributor.authorKim, Eui Tae-
dc.contributor.authorKim, Sung June-
dc.contributor.authorChung, Hum-
dc.date.accessioned2012-06-29T05:09:34Z-
dc.date.available2012-06-29T05:09:34Z-
dc.date.issued2009-12-
dc.identifier.citationINVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE; Vol.50 12; 5859-5866ko_KR
dc.identifier.issn0146-0404-
dc.identifier.urihttps://hdl.handle.net/10371/77930-
dc.description.abstractPURPOSE. To develop a liquid crystal polymer (LCP)-based, long-term implantable, retinal stimulation microelectrode array using a novel fabrication method. METHODS. The fabrication process used laser micromachining and customized thermal-press bonding to produce LCP-based microelectrode arrays. To evaluate the fabrication process and the resultant electrode arrays, in vitro reliability tests and in vivo animal experiments were performed. The in vitro tests consisted of electrode site impedance recording and electrode interlayer adhesion monitoring during accelerated soak tests. For in vivo testing, the fabricated electrode arrays were implanted in the suprachoroidal space of rabbit eyes. Optical coherence tomography (OCT) and electrically evoked cortical potentials (EECPs) were used to determine long-term biocompatibility and functionality of the implant. RESULTS. The fabricated structure had a smooth, rounded edge profile and exhibited moderate flexibility, which are advantageous features for safe implantation without guide tools. After accelerated soak tests at 75 degrees C in phosphate-buffered saline, the electrode sites showed no degradation, and the interlayer adhesion of the structure showed acceptable stability for more than 2 months. The electrode arrays were safely implanted in the suprachoroidal space of rabbit eyes, and EECP waveforms were recorded. Over a 3-month postoperative period, no chorioretinal inflammation or structural deformities were observed by OCT and histologic examination. CONCLUSIONS. LCP-based flexible microelectrode arrays can be successfully applied as retinal prostheses. The results demonstrate that such electrode arrays are safe, biocompatible, and mechanically stable and that they can be effective as part of a chronic retinal implant system. (Invest Ophthalmol Vis Sci. 2009; 50: 5859-5866) DOI:10.1167/iovs.09-3743ko_KR
dc.language.isoenko_KR
dc.publisherASSOC RESEARCH VISION OPHTHALMOLOGY INCko_KR
dc.titleDevelopment of Microelectrode Arrays for Artificial Retinal Implants Using Liquid Crystal Polymersko_KR
dc.typeArticleko_KR
dc.contributor.AlternativeAuthor이승우-
dc.contributor.AlternativeAuthor서종모-
dc.contributor.AlternativeAuthor하승민-
dc.contributor.AlternativeAuthor김의태-
dc.contributor.AlternativeAuthor정흠-
dc.contributor.AlternativeAuthor김성준-
dc.identifier.doi10.1167/iovs.09-3743-
dc.citation.journaltitleINVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE-
dc.description.citedreferenceKim ET, 2008, SENSORS-BASEL, V8, P5845, DOI 10.3390/s8095845-
dc.description.citedreferenceDean RN, 2008, IEEE T COMPON PACK T, V31, P315, DOI 10.1109/TCAPT.2008.916790-
dc.description.citedreferenceThompson DC, 2006, IEEE MICROW WIREL CO, V16, P410, DOI 10.1109/LMWC.2006.877130-
dc.description.citedreferenceKEESARA VV, 2006, MAT RES SOC S P E, V926-
dc.description.citedreferenceSachs HG, 2005, GRAEF ARCH CLIN EXP, V243, P464, DOI 10.1007/s00417-004-1049-x-
dc.description.citedreferenceWalter P, 2005, INVEST OPHTH VIS SCI, V46, P1780, DOI 10.1167/iovs.04-0924-
dc.description.citedreference*ROG CORP, 2005, R FLEX 3000 SER LIQ-
dc.description.citedreferenceMurray S, 2004, J ELECTRON PACKAGING, V126, P390, DOI 10.1115/1.1773853-
dc.description.citedreferenceSakaguchi H, 2004, JPN J OPHTHALMOL, V48, P256, DOI 10.1007/s10384-04-0055-1-
dc.description.citedreferenceSeo JM, 2004, MAT SCI ENG C-BIO S, V24, P185, DOI 10.1016/j.msec.2003.09.019-
dc.description.citedreferenceLee CJ, 2004, MAT SCI ENG C-BIO S, V24, P265, DOI 10.1016/j.msec.2003.09.143-
dc.description.citedreferenceHumayun MS, 2003, VISION RES, V43, P2573, DOI 10.1016/S0042-6989(03)00457-7-
dc.description.citedreferenceWang XF, 2003, J MICROMECH MICROENG, V13, P628-
dc.description.citedreferenceCui XY, 2003, BIOMATERIALS, V24, P777-
dc.description.citedreferenceEDELL DJ, 2002, INSULATING BIOMATERI-
dc.description.citedreferenceWang C, 1999, J APPL POLYM SCI, V73, P1899-
dc.description.citedreferenceLi L, 1999, HEARING RES, V133, P27-
dc.description.citedreferenceJAYARAJ K, 1998, ADV MICROELECTRON, V25, P15-
dc.description.citedreferenceCULBERTSON EC, 1995, ELECT COMPONENTS TEC, P520-
dc.description.citedreferenceDORMAN MF, 1992, J SPEECH HEAR RES, V35, P1126-
dc.description.citedreferenceLOEB GE, 1983, MED BIOL ENG COMPUT, V21, P241-
dc.description.citedreferenceDEIASI R, 1971, J APPL POLYM SCI, V15, P2965-
dc.description.tc3-
Appears in Collections:
Files in This Item:
There are no files associated with this item.

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share