Publications

Detailed Information

Multi-Stage Aerodynamic Design of Multiple-Body Geometries using Global and Local Optimization Methods

Cited 0 time in Web of Science Cited 0 time in Scopus
Authors

Yim, Jinwoo; Lee, Byungjoon; Kim, Chongam; Shigeru Obayashi

Issue Date
2008-01-07
Publisher
AIAA
Citation
46th AIAA Aerospace Sciences Meeting and Exhibit, pp. 134- (14pages)
Keywords
공학
Abstract
An efficient and high-fidelity design approach is proposed by combining global and local optimization methods for wing planform and surface design. For enhanced design results, aerodynamic shape optimization process is carried out via 2-stage with different optimization strategy. In the first stage, global optimization techniques are applied to planform design with a few geometric design variables. In the second stage, local optimization techniques are used for wing surface design with a lot of design variables to maintain a sufficient design space with high DOF (Degree of Freedom) geometric change. For global optimization, meta-modeling techniques such as RS (Response Surface) and Kriging methods are used in conjunction with Genetic Algorithm (GA). For local optimization, a discrete adjoint variable method is used. By the successive combination of global and local optimization techniques, drag minimization is performed for a multi-body aircraft configuration while maintaining the baseline lift and the wing weight at the same time. Through the design process, performances of the test models are remarkably improved in comparison with the single stage design approach. The capability of proposed design framework including wing planform design variables can be evaluated by the drag decomposition method which can provide improvement of induced drag and wave drag, respectively.
Language
English
URI
https://hdl.handle.net/10371/82666
DOI
https://doi.org/10.2514/6.2008-134?prevSearch=&searchHistoryKey=
Files in This Item:
Appears in Collections:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share