Browse

Enhanced sialylation and in vivo efficacy of recombinant human alpha-galactosidase through in vitro glycosylation

Cited 7 time in Web of Science Cited 8 time in Scopus
Authors
Sohn, Youngsoo; Lee, Jung Mi; Park, Heung-Rok; Jung, Sung-Chul; Park, Tai Hyun; Oh, Doo-Byoung
Issue Date
2013-03-31
Publisher
한국생화학분자생물학회
The Korean Society for Biochemistry and Molecular Biology
Citation
BMB Reports Vol.46 No.3, pp. 157-162
Keywords
자연과학Alpha-galactosidase AEnzyme replacement therapyFabry diseaseIn vitro glycosylationSialic acid
Abstract
Human alpha-galactosidase A (GLA) has been used in enzyme replacement therapy for patients with Fabry disease. We expressed recombinant GLA from Chinese hamster ovary cells with very high productivity. When compared to an approved GLA (agalsidase beta), its size and charge were found to be smaller and more neutral. These differences resulted from the lack of terminal sialic acids playing essential roles in the serum half-life and proper tissue targeting. Because a simple sialylation reaction was not enough to increase the sialic acid content, a combined reaction using galactosyltransferase, sialyltransferase, and their sugar substrates at the same time was developed and optimized to reduce the incubation time. The product generated by this reaction had nearly the same size, isoelectric points, and sialic acid content as agalsidase beta. Furthermore, it had better in vivo efficacy to degrade the accumulated globotriaosylceramide in target organs of Fabry mice compared to an unmodified version. [BMB Reports 2013; 46(3): 157-162]
Human α-galactosidase A (GLA) has been used in enzyme replacement therapy for patients with Fabry disease. We expressed recombinant GLA from Chinese hamster ovary cells with very high productivity. When compared to an approved GLA (agalsidase beta), its size and charge were found to be smaller and more neutral. These differences resulted from the lack of terminal sialic acids playing essential roles in the serum half-life and proper tissue targeting. Because a simple sialylation reaction was not enough to increase the sialic acid content, a combined reaction using galactosyltransferase, sialyltransferase, and their sugar substrates at the same time was developed and optimized to reduce the incubation time. The product generated by this reaction had nearly the same size, isoelectric points, and sialic acid content as agalsidase beta. Furthermore, it had better in vivo efficacy to degrade the accumulated globotriaosylceramide in target organs of Fabry mice compared to an unmodified version.
ISSN
1976-66966 (print)
1976-670X (electronic)
Language
English
URI
https://hdl.handle.net/10371/83296
DOI
https://doi.org/10.5483/BMBRep.2013.46.3.192
Files in This Item:
Appears in Collections:
College of Engineering/Engineering Practice School (공과대학/대학원)Dept. of Chemical and Biological Engineering (화학생물공학부)Journal Papers (저널논문_화학생물공학부)
  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse