Publications

Detailed Information

Synthetic redesign of Escherichia coli for cadaverine production from galactose

DC Field Value Language
dc.contributor.authorKwak, Dong Hun-
dc.contributor.authorLim, Hyun Gyu-
dc.contributor.authorYang, Jina-
dc.contributor.authorSeo, Sang Woo-
dc.contributor.authorJung, Gyoo Yeol-
dc.date.accessioned2017-02-03T01:05:54Z-
dc.date.available2017-02-03T01:05:54Z-
dc.date.issued2017-01-21-
dc.identifier.citationBiotechnology for Biofuels, 10(1):20ko_KR
dc.identifier.urihttps://hdl.handle.net/10371/100395-
dc.descriptionThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made.
ko_KR
dc.description.abstractBackground
With increasing concerns over the environment, biological production of cadaverine has been suggested as an alternative route to replace polyamides generated from the petroleum-based process. For an ideal bioprocess, cadaverine should be produced with high yield and productivity from various sugars abundant in biomass. However, most microorganisms are not able to efficiently metabolize other biomass-derived sugars as fast as glucose. This results in reduced growth rate and low carbon flux toward the production of desired bio-chemicals. Thus, redesign of microorganisms is necessary for utilizing those carbon sources with enhanced carbon flux and product formation.

Results
In this study, we engineered Escherichia coli to produce cadaverine with rapid assimilation of galactose, a promising future feedstock. To achieve this, genes related to the metabolic pathway were maximally expressed to amplify the flux toward cadaverine production via synthetic expression cassettes consisting of predictive and quantitative genetic parts (promoters, 5′-untranslated regions, and terminators). Furthermore, the feedback inhibition of metabolic enzymes and degradation/re-uptake pathways was inactivated to robustly produce cadaverine. Finally, the resultant strain, DHK4, produced 8.80g/L cadaverine with high yield (0.170g/g) and productivity (0.293g/L/h) during fed-batch fermentation, which was similar to or better than the previous glucose fermentation.

Conclusions
Taken together, synthetic redesign of a microorganism with predictive and quantitative genetic parts is a prerequisite for converting sugars from abundant biomass into desired platform chemicals. This is the first report to produce cadaverine from galactose. Moreover, the yield (0.170g/g) was the highest among engineered E. coli systems.
ko_KR
dc.language.isoenko_KR
dc.publisherBioMed Centralko_KR
dc.subjectCadaverineko_KR
dc.subject1,5-diaminopentaneko_KR
dc.subjectGalactoseko_KR
dc.subjectSynthetic biologyko_KR
dc.subjectMetabolic engineeringko_KR
dc.titleSynthetic redesign of Escherichia coli for cadaverine production from galactoseko_KR
dc.typeArticleko_KR
dc.contributor.AlternativeAuthor곽동훈-
dc.contributor.AlternativeAuthor임현규-
dc.contributor.AlternativeAuthor양지나-
dc.contributor.AlternativeAuthor서상우-
dc.contributor.AlternativeAuthor정규열-
dc.identifier.doi10.1186/s13068-017-0707-2-
dc.language.rfc3066en-
dc.rights.holderThe Author(s)-
dc.date.updated2017-01-22T03:05:01Z-
Appears in Collections:
Files in This Item:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share