Publications

Detailed Information

EXPERIMENTAL STUDY ON NANOPARTICLE-BASED HIGH CURRENT DENSITY CATHODE FOR TERAHERTZ DEVICES : 테라헤르츠장치를 위한 나노입자기반의 높은 전류 밀도 음극에 관한 실험적 연구

DC Field Value Language
dc.contributor.advisor박건식-
dc.contributor.author바릭란잔쿠말-
dc.date.accessioned2017-07-13T07:04:17Z-
dc.date.available2017-07-13T07:04:17Z-
dc.date.issued2014-08-
dc.identifier.other000000020721-
dc.identifier.urihttps://hdl.handle.net/10371/119003-
dc.description학위논문 (박사)-- 서울대학교 대학원 : 전기·컴퓨터공학부, 2014. 8. 박건식.-
dc.description.abstract테라헤르츠(THz) 영역의 진공전자장치(VED)를 위해서는 100A/cm2에 가까운 음극 전류밀도를 제공할 수 있는 음극으로부터 생성되는 높은 전류밀도의 전자빔이 필요하다. 기존의 B 타입의 음극으로는 대략 10A/cm2 정도의 음극 전류밀도를 생성할 수 있기때문에 높은 전류밀도와 높은 방출 균일도를 가진 소형 음극 개발이
요구되는 상황이다.
이 학위논문에서는 나노기술을 사용하여 테라헤르츠 진공전자장치에 사용될 수 있는 100A/cm2의 전류밀도를 생성하는 음극을 설계하고 개발하는 것에 동기부여를 두었다. 열적 측면에 대한 이해와 방출 매커니즘 그리고 전자방출 능력을 향상시키기 위한 여러 파라미터(표면 거칠기, 기공률, 기공 형상, 기공 분포, 기공 간의 연결)의 영향에 대한 이론적 연구가 수행되었다. 분석결과 전자방출이 입자의 형태, 크기, 도핑의 균일성 및 입자 분포에 의해 영향을 받는 것으로 나타났다. 따라서 상기 요건을 가장 만족하는 나노입자 합성을 위한 화학 공정을 개발 하였다. 산화 스칸듐(Sc2O3)을 텅스텐에 추가하면 전자방출 정도가 텅스텐보다 10배 이상 향상된다고 알려져있다. 시뮬레이션 결과 입자가 구의 형태를 가지고 있다면 활성물질이 내부에서 표면으로 증발되는 확산율이 낮아지는 것으로 나타났다. 스칸듐이 도핑된 구형 텅스텐 나노입자는 sol-gel 공정으로 합성할 수 있다. 합성된 나노입자의 형태는 주사전자현미경(Scanning Electron Microscope)과 투과전자현미경(Tunneling Electron Microscope)으로 측정하였으며, 도핑 균일성은 EDS분광법(Energy-dispersive X-ray Spectroscopy)으로, 입자의 순도는 X-선 회절(X-ray Diffraction)을 이용하였고, 입자의 크기 분포 및 균일도는 동적 광분광법(Dynamic Light Spectroscopy)을 사용하여 측정하였다. 측정결과 합성된 입자는 균일하게 도핑된 구형의 나노입자라는 것이 확인되었다.
또한 본 연구에서는 표면 거칠기가 전자방출에 미치는 영향에 대해서도 수행하였다. 방사표면에서 낮은 방사 손실을 얻기 위해서는 표면 거칠기가 500nm 이하가 되어야 한다는 것을 밝혔다. 합성한 나노입자는 매끈한 표면을 가진 특수 설계된 die-punch로 압력을 가해 눌러 펠렛 형태로 만들고 소결 후 개별 매립형 히터에 장착하였다. 초고진공 챔버내에서 만들어진 음극의 표면특성과 전자방출 측정은 AES 분광법 (Auger Electron Spectroscopy) 및 평판 양극을 이용하여 측정하였다. 측정된 전자 방출 결과는 매우 고무적인데, 제작된 음극이 10800CB의 밝기 온도에서 100A/cm2 의 음극 전류 밀도를 달성함을 확인하였다. 일함수는 제로-전계 방출을 통해 1.75eV으로 계산되었다. 매우 흥미로운 점은 I-V 특성이 높은 양극 전계에서도 포화되지 않은 것이다. 전계 강화를 일으키는 음극표면의 충분히 두꺼운 반도체 활성층의 형성이 이러한 특성이 나타난 이유이다. 이는 B 타입 음극에 비해 높은 활성물질의 범위를 보여주는 AES 데이터에서도 확인 할 수 있다.
-
dc.description.abstractVacuum electron devices (VED) in terahertz (THz) regime demand a high current density beam, which can be generated from a cathode capable of delivering current density close to 100A/cm2. A conventional impregnated cathode (B-type) can produce current density of about 10A/cm2. Therefore, the development of a high current density electron source with a high emission uniformity in a miniature size is a challenge.
The primary aim of this thesis work is to design and development of a dispenser cathode using nanotechnology that could deliver current density up to 100A/cm2 for use in a THz VED. Theoretical studies were carried out on the influence of various cathode parameters such as surface roughness, porosity, pore geometry, pore distribution, inter-pore connectivity and thermal aspects with a view to understand the emission mechanism and to improve emission capability. The analytical results show that the emission is influenced by particle morphology, its size, homogeneous doping, and particle distribution. Accordingly, a chemical process was developed to make nanopowder with its particles closely meeting the above requirements. It is known that addition of scandia (Sc2O3) to tungsten enhances the emission by more than ten-fold. Simulations of barium flow have shown that diffusivity, a measure of evaporation rate of the active material from the bulk to the surface will be lowered if the particles possess a spherical shape. Scandia-doped tungsten nanoparticles of spherical morphology were synthesized using a controlled sol-gel process. The powder was characterized using: Scanning Electron Microscope (SEM) in conjunction with Tunneling Electron Microscope (TEM) to study the morphology, Energy-dispersive X-ray Spectroscopy (EDS) to study the doping homogeneity, X-ray Diffraction (XRD) to study the phase purity, and Dynamic Light Spectroscopy (DLS) to study the uniformity of particle size. It was found that the powder contained nanoparticles of uniform spherical shape with homogeneous doping.
Studies were also carried out on the surface roughness to understand the influence on the emissivity and hence the emission. It was found that it is desirable to keep the roughness below 500nm for low radiation loss from the emitting surface. The nanopowder was pressed using a specially designed die-punch having mirror-finish surface to make pellets. The pellets were sintered and integrated with individual potted heaters. These were tested in a UHV chamber containing: Auger Electron Spectroscopy (AES) for characterization of surface, and plane anode to measure the emission. The emission results are highly encouraging. Current density of up to 100A/cm2 was achieved at 10800CB from such cathodes. The work function, as determined from the zero-field emission, is about 1.75eV. It is interesting to note that the I-V characteristics exhibited a non-saturation behavior at higher anode fields. This behavior is attributed to the formation of a substantially thick semiconducting active layer on the surface which causes field enhancement. This is further corroborated with the AES data which showed a high coverage of active material as compared to a B-type cathode.
-
dc.description.tableofcontentsAbstract i
List Of Figures v
List Of Tables viii
Chapter 1 Introduction of thermionic cathode 1
1.1 Introduction 2
1.2 Historical background 6
1.2.1 Evolution of dispenser cathode………………………………………………...6
1.2.2 Evolution of scandate cathode…………………………………………………7
1.2.3 Evolution of nanoparticle scandate cathode…………………………………...8
1.3 Emission mechanism of dispenser cathode 10
1.4 Motivation 12
1.5 Goal 14
1.6 Organization of the thesis 14
Chapter 2 Novel synthesis method and experimental characterization of nanoparticle for THz cathodes 15
2.1 Previous synthesis methods 16
2.2 Requirements of nanoparticle physical parameters for THz cathode 17
2.3 Choice of synthesis process of scandia-doped tungsten nanoparticle 17
2.4 Experimental synthesis of nanoparticle 19
2.5 Experimental characterizations of nanoparticle 21
2.5.1 Characterization of morphology……………………………………………...21
2.5.2 Characterization of doping homogeneity……………………………………..26
2.5.3 Characterization of particle size distribution…………………………………28
2.5.4 Characterization of particle phase orientation………………………………..31
Chapter 3 Design and experimental characterization of nanoparticle-based pellet for the cathode fabrication 34
3.1 Design of pellet 35
3.1.1 Optimization of pore parameters……………………………………………..37
3.1.2 Estimation of required porosity………………………………………………40
3.1.3 Influence on the geometry of nanoparticles………………………………….45
3.1.4 Estimation of equilibrium Ba/BaO pressure (P0) inside the pore of matrix…..51
3.2 Experimental characterization of porosity and pore uniformity 52
3.3 Optimization of cathode surface roughness 57
3.4 Thermal design and experimental validation of cathode assembly 60
Chapter 4 Realization of nanoparticle based cathode 64
4.1 Fabrication of cathode 65
4.1.1 Conventional fabrication technique…………………………………………..65
4.1.2 Modified fabrication technique……………………………………………….66
4.2 Details of experimental setup for emission measurements and surface characterization 69
4.3 Characterization of cathode 72
4.3.1 Emission measurement……………………………………………………….73
4.3.2 Characterization of emission surface using AES……………………………..75
4.3.3 Estimation of cathode life using accelerated life testing……………………..79
Chapter 5 Discussion of results, conclusions, and suggestions for future work 82
5.1 Study of cathode matrix parameters 84
5.2 Study of various physical parameters of nanoparticles 85
5.3 Synthesis and characterization of nanoparticle 85
5.4 Fabrication and characterization of cathode 86
5.5 Suggestions for future work 88
Bibliography 89
List of publications 93
Abstract in Korean 96
Acknowledgements 98
-
dc.formatapplication/pdf-
dc.format.extent11300475 bytes-
dc.format.mediumapplication/pdf-
dc.language.isoen-
dc.publisher서울대학교 대학원-
dc.subjectSol-gel synthesis-
dc.subjectnanoparticle cathode-
dc.subjectdispenser cathode-
dc.subjectAuger electron spectroscopy-
dc.subjectTHz cathode-
dc.subjectnanoparticle characterization. 솔-젤 합성-
dc.subject나노입자 음극-
dc.subject디스펜서 음극-
dc.subject오제 전자 분광법-
dc.subject테라헤르츠 음극-
dc.subject나노입자 특성-
dc.subject.ddc621-
dc.titleEXPERIMENTAL STUDY ON NANOPARTICLE-BASED HIGH CURRENT DENSITY CATHODE FOR TERAHERTZ DEVICES-
dc.title.alternative테라헤르츠장치를 위한 나노입자기반의 높은 전류 밀도 음극에 관한 실험적 연구-
dc.typeThesis-
dc.contributor.AlternativeAuthorRANJAN KUMAR BARIK-
dc.description.degreeDoctor-
dc.citation.pagesvii, 98-
dc.contributor.affiliation공과대학 전기·컴퓨터공학부-
dc.date.awarded2014-08-
Appears in Collections:
Files in This Item:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share