Publications

Detailed Information

Functional Analysis of EGF, IGF-I, VEGF and CSF2 on Development of Porcine Conceptus Trophectoderm during Early Pregnancy : 임신초기 돼지 영양외배엽 세포의 발달에 미치는 EGF, IGF-I, VEGF 및 CSF2의 기능분석 연구

DC Field Value Language
dc.contributor.advisor안용준-
dc.contributor.author정우영-
dc.date.accessioned2017-07-13T08:27:04Z-
dc.date.available2017-07-13T08:27:04Z-
dc.date.issued2014-02-
dc.identifier.other000000017532-
dc.identifier.urihttps://hdl.handle.net/10371/119560-
dc.description학위논문 (박사)-- 서울대학교 대학원 : 농생명공학부(바이오모듈레이션전공), 2014. 2. 안용준.-
dc.description.abstractThe majority of early conceptus mortality in pregnancy occurs during the peri-implantation stage, suggesting that this period is important for conceptus viability and the establishment of pregnancy. Successful establishment of pregnancy in all mammalian species depends on the orchestrated molecular events that transpire at the conceptus-uterine interface during the peri-implantation phase. This maternal-conceptus interaction is especially crucial in pigs because in them non-invasive epitheliochorial placentation occurs, in which the pre-implantation phase is prolonged.

During the pre-implantation period, conceptus survival and the establishment of pregnancy are known to depend on the developing conceptus receiving an adequate supply of histotroph, which contains a wide range of nutrients and growth factors. Evidence links epidermal growth factor (EGF), insulin-like growth factor-I (IGF-I), vascular endothelial growth factor (VEGF), and colony-stimulating factor 2 (CSF2) to embryogenesis or implantation in various mammalian species
-
dc.description.abstracthowever, in the case of pig, little is known about such functions of these growth factors, especially their regulatory mechanisms at the maternal-conceptus interface. Therefore, the objectives of this study were to determine: 1) the temporal and cell-specific expression of EGF, IGF-I, VEGF, and CSF2 signaling systems in the porcine endometrium during the estrous cycle and early pregnancy-
dc.description.abstract2) the potential intracellular signaling pathways responsible for the activities of these four factors in primary porcine trophectoderm (pTr) cells-
dc.description.abstractand 3) the changes in cellular activities induced by these promising factors.

First, the functional effect and cellular signaling cascades in pTr cells induced by EGF, which exhibits potential growth-promoting activities on the conceptus and endometrium, were investigated. EGFR mRNA and protein were abundant in endometrial luminal epithelia (LE) and glandular epithelia (GE), stratum compactum stroma, and conceptus trophectoderm on Days 13-14 of pregnancy, but not in any other cells of the uterus. EGF treatment of pTr cells increased the abundance of phosphorylated (p)-AKT1, p-ERK1/2 MAPK and p-P90RSK in the nucleus and/or cytoplasm when compared with the levels in control cells. Furthermore, EGF-stimulated phosphorylation of AKT1 and ERK1/2 MAPK were inhibited in pTr cells transfected with an EGFR siRNA, and compared with control siRNA-transfected pTr cells, the EGFR siRNA-transfected pTr cells exhibited an increase in the expression of gene encoding interferon (IFN)-δ and transforming growth factor (TGF) β-1
-
dc.description.abstractby contrast, no effect was detected on the expression of the gene encoding IFN-γ. Moreover, EGF stimulated the proliferation and migration of pTr cells, but these stimulatory effects were blocked by pharmacological inhibitors such as SB203580 (a p38 inhibitor), U0126 (a MAPK inhibitor), rapamycin (an MTOR inhibitor), and LY294002 (a PI3K inhibitor).

Second, IGF-I was examined. IGF-1 is another promising growth factor that is known to play key roles in reproductive processes
-
dc.description.abstracthowever, little is known about IGF-I-induced functional effects and regulatory mechanisms during peri-implantation in pigs. In this study, endometrial type I IGF receptor (IGF-IR) mRNA was determined to increase substantially during early pregnancy relative to the level during the estrous cycle, and the mRNAs of both IGF-I and IGF-IR were abundant in endometrial LE and GE, stroma and conceptus trophectoderm on Day 12 of pregnancy. Moreover, IGF-I treatment potently increased the amounts of p-AKT1 and, ERK1/2 MAPK in the nucleus and cytoplasm and of RPS6 in the cytosol when compared with the amounts in untreated pTr cells, and IGF-I-induced activation of AKT1 and ERK1/2 was blocked by LY294002. Furthermore, IGF-I strongly stimulated both the proliferation and the migration of pTr cells, but these effects were inhibited by SB203580, U0126, rapamycin and LY294002.

Third, this study focused on VEGF, which was identified as a potential mediator of the fetal-maternal dialog that regulates the development of the peri-implantation porcine conceptus. In addition to its known angiogenic effects, VEGF has been suggested to play roles in the development of the early embryo, but VEGF-induced effects on the peri-implantation conceptus remain unknown. Results of this study revealed that endometrial VEGF, VEGF receptor (VEGFR)-1, and VEGFR-2 mRNA levels in endometrial LE and GE, endothelial blood vessels, and scattered cells in the stroma were more abundant during the peri-implantation period of pregnancy than during the estrous cycle. Moreover, VEGF treatment of pTr cells increased the abundance of p-AKT1, p-ERK1/2, p-p70RSK, p-RPS6 and p-4EBP1, and the addition of LY294002 suppressed VEGF-induced phosphorylation of ERK1/2 and AKT1. Furthermore, VEGF potently stimulated both the proliferation and the migration of pTr cells, but these effects were inhibited in the presence of SB203580, U0126, rapamycin and LY294002.

The fourth promising cytokine studied was CSF2, which is also known as granulocyte-macrophage colony-stimulating factor (GM-CSF). CSF2 plays a role in facilitating mammalian early embryonic development. In this study, endometrial CSF2 mRNA expression was determined to be increased during the peri-implantation period relative to the mRNA level during the estrous cycle. In pTr cells, CSF2 significantly induced the activation of AKT1, ERK1/2, MTOR, p70RSK, and RPS6, but not of STAT3, and the addition of LY294002 abolished CSF2-induced increases in p-ERK1/2, p-MTOR, and p-AKT1 levels. Furthermore, CSF2 strongly stimulated pTr cell proliferation, an effect that was blocked by U0126, rapamycin and LY294002.

Collectively, these results provide new insights into the potential mediators that regulate the development of the peri-implantation conceptus at the fetal-maternal interface. These results indicate that endometrial- and/or conceptus derived EGF, IGF-I, VEGF, and CSF2 critically affect the growth and development of porcine trophectoderm cells, and that these stimulatory effects are coordinately regulated by multiple cellular signaling cascades including the PI3K-AKT and ERK1/2 MAPK pathways during early pregnancy in pigs.
-
dc.description.tableofcontentsCHAPTER 1. General Introduction 1
CHAPTER 2. Literature Review 6
1. Estrous Cycle and Early Pregnancy 7
1.1. Estrous Cycle 7
1.2. Pre-Implantation Period 9
1.3. Opening of the Implantation Window and Implantation 10
2. Physiology of the Porcine Conceptus during Peri-Implantation 12
2.1. Early Conceptus Development 12
2.2. Maternal Recognition of Pregnancy 12
2.3. Conceptus Trophoblastic Elongation 13
2.4. Conceptus Apposition and Attachment to the Uterine Luminal Epithelium 15
3. Uterine Microenvironment during Early Pregnancy 16
3.1. Maternal-Conceptus Interactions 16
3.2. Embryonic Factors 17
3.3. Uterine Factors 18
4. Growth Factors and Cytokines Regulating Conceptus Cellular Processes 19
5. Promising Uterine Factors Affecting Conceptus Development and Implantation 21
5.1. Epidermal Growth Factor (EGF) 21
5.2. Insulin-Like Growth Factor-I (IGF-I) 22
5.3. Vascular Endothelial Growth Factor (VEGF) 23
5.4. Colony-Stimulating Factor 2 (CSF2) 24
CHAPTER 3. Epidermal Growth Factor Stimulates Proliferation and Migration of Porcine Trophectoderm Cells Through Protooncogenic Protein Kinase 1 and Extracellular-Signal-Regulated Kinases 1/2 Mitogen- Activated Protein Kinase Signal Transduction Cascades during Early Pregnancy 27
1. Abstract 28
2. Introduction 30
3. Materials and Methods 34
4. Results 44
5. Discussion 61
CHAPTER 4. Insulin-Like Growth Factor I Induces Proliferation and Migration of Porcine Trophectoderm Cells through Multiple Cell Signaling Pathways, Including Protooncogenic Protein Kinase 1 and Mitogen- Activated Protein Kinase 67
1. Abstract 68
2. Introduction 70
3. Materials and Methods 74
4. Results 82
5. Discussion 96
CHAPTER 5. Stimulatory Effect of Vascular Endothelial Growth Factor on Proliferation and Migration of Porcine Trophectoderm Cells and Their Regulation by the Phosphatidylinositol-3-Kinase-AKT and Mitogen- Activated Protein Kinase Cell Signaling Pathways 103
1. Abstract 104
2. Introduction 106
3. Materials and Methods 110
4. Results 118
5. Discussion 133
CHAPTER 6. Proliferation-Stimulating Effect of Colony Stimulating Factor 2 on Porcine Trophectoderm Cells is Mediated by Activation of Phosphatidylinositol 3-Kinase and Extracellular Signal-Regulated Kinase 1/2 Mitogen-Activated Protein Kinase 139
1. Abstract 140
2. Introduction 142
3. Materials and Methods 146
4. Results 152
5. Discussion 162
CHAPTER 7. AHCYL1 Is Mediated by Estrogen-Induced ERK1/2 MAPK Cell Signaling and MicroRNA Regulation to Effect Functional Aspects of the Avian Oviduct 168
1. Abstract 169
2. Introduction 170
3. Materials and Methods 173
4. Results 182
5. Discussion 202
CHAPTER 8. Paradoxical Expression of AHCYL1 Affecting Ovarian Carcinogenesis between Chickens and Women 208
1. Abstract 209
2. Introduction 211
3. Materials and Methods 213
4. Results 222
5. Discussion 241
CHAPTER 9. Cell-Specific and Temporal Aspects of Gene Expression in the Chicken Oviduct at Different Stages of the Laying Cycle 245
1. Abstract 246
2. Introduction 247
3. Materials and Methods 249
4. Results 254
5. Discussion 269
CHAPTER 10. Recrudescence Mechanism and Gene Expression Profile of the Reproductive Tracts in Chicken during the Molting Period 276
1. Abstract 277
2. Introduction 279
3. Materials and Methods 283
4. Results 292
5. Discussion 314
CHAPTER 11. Conclusion 323
REFERENCES 331
초록 376
-
dc.formatapplication/pdf-
dc.format.extent10638373 bytes-
dc.format.mediumapplication/pdf-
dc.language.isoen-
dc.publisher서울대학교 대학원-
dc.subjecttrophectoderm cells-
dc.subjectperi-implantation-
dc.subjectEGF-
dc.subjectIGF-I-
dc.subjectVEGF-
dc.subjectCSF2-
dc.subject.ddc571-
dc.titleFunctional Analysis of EGF, IGF-I, VEGF and CSF2 on Development of Porcine Conceptus Trophectoderm during Early Pregnancy-
dc.title.alternative임신초기 돼지 영양외배엽 세포의 발달에 미치는 EGF, IGF-I, VEGF 및 CSF2의 기능분석 연구-
dc.typeThesis-
dc.contributor.AlternativeAuthorWooyoung Jeong-
dc.description.degreeDoctor-
dc.citation.pagesxxi, 379-
dc.contributor.affiliation농업생명과학대학 농생명공학부(바이오모듈레이션전공)-
dc.date.awarded2014-02-
Appears in Collections:
Files in This Item:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share