Publications

Detailed Information

Structure control of electrocatalysts for enhanced ORR in PEMFC cathode : 고분자 전해질막 연료전지 공기극내 산소환원반응 향상을 위한 전극촉매의 구조 조절

DC Field Value Language
dc.contributor.advisor이호인-
dc.contributor.author이원두-
dc.date.accessioned2017-07-13T08:33:04Z-
dc.date.available2017-07-13T08:33:04Z-
dc.date.issued2012-08-
dc.identifier.other000000004646-
dc.identifier.urihttps://hdl.handle.net/10371/119646-
dc.description학위논문 (박사)-- 서울대학교 대학원 : 화학생물공학부, 2012. 8. 이호인.-
dc.description.abstract고분자전해질막 연료전지는 상대적으로 낮은 온도에서 작동되며 오염물질의 배출이 거의 없거나 극히 미미한 양이 발생하기 때문에 수송용으로의 적용에 상당히 각광을 받고 있다. 그러나 공기극의 반응속도가 매우 느리며, 백금 기반의 촉매 사용에 따른 높은 가격으로 인하여 상업화가 어려운 실정이다. 이미 많은 연구들을 통하여 연료전지의 활성 한계는 공기극에서 발생하는 열역학적 전위차, 즉 공기극의 과전압에 의한 것이라고 밝혀졌다. 이의 해결방안으로, 백금의 이용률 증가, 백금에 다른 금속의 첨가, 탄소담체의 성능개선 등이 제시되고 있다. 본 연구에서는 전극촉매의 구조를 조절하여 산소환원반응의 활성을 증가시키는 연구를 수행하였다.
현재 고분자전해질막 연료전지의 공기극 촉매는 낮은 온도에서 높은 산소환원반응 활성을 보이는 백금의 특성으로 인해 탄소에 담지된 백금촉매가 가장 적합한 촉매로 알려져 있다. 그러나 백금은 고가의 귀금속이기 때문에 작은 크기의 백금입자를 제조하여 활성표면적을 늘리고 사용량을 줄여야 한다. 본 연구에서는 백금나노입자를 작게 만들 수 있는 방법으로 알려진 폴리올환원법의 반응조건을 조절하여 작은 백금나노입자를 제조하고자 하였다. 이를 통해 1.2 nm의 작은 크기를 갖는 백금나노입자를 개발할 수 있었으며, 작은 크기로 인한 활성표면적의 증가효과를 가져왔다.
세리아-지르코니아 복합산화물을 수열합성법으로 제조하여 탄소와 함께 담체로 사용하는 백금촉매를 제조하였다. 세리아-지르코니아 복합산화물의 입자크기와 결정화도를 조절하면서 백금의 산소환원반응에 미치는 영향을 살펴 본 결과, 세리아-지르코니아 복합산화물의 표면에 존재하는 OH가 산소환원반응이 일어나는 동안 전해질로부터 백금에 흡착하는 OH의 흡착을 막아 백금표면의 산소환원반응의 활성을 증가시켰다.
폴리올환원법으로 금속나노입자를 제조할 때, 금속전구체간의 환원속도차를 이용하여 코어-쉘과 유사한 형태의 구조를 갖는 백금-팔라듐 나노입자를 제조하였다. 제조된 나노입자는, 백금이 주성분인 내부층에 의하여 작은 입자크기와 증가된 활성면적을 보였으며, 표면층에 존재하는 팔라듐에 의하여 높은 산소환원반응 성능을 보여주었다. 또한 제조된 코어-쉘 유사 형태의 백금-팔라듐 나노입자에 세리아-지르코니아 복합산화물을 더하여 우수한 산소환원반응 활성을 갖는 촉매를 개발하였다.
-
dc.description.abstractPolymer electrolyte membrane fuel cell(PEMFC) has received considerable attention for transportation applications due to its high energy density, relatively low operation temperature, zero or low emission of pollutants, and minimal corrosion problems. However, the commercial viability of PEMFC is still hindered by several problems, including poor kinetics of cathodic reactions and high costs of Pt-based electrocatalysts. It is well known that most of performance losses due to the deviation from the thermodynamic potential of PEMFC come from the cathodic reaction. In order to improve in oxygen reduction reaction(ORR), the highly active PEMFC cathodic catlyst will be developed.
Highly dispersed Pt nanoparticles supported on carbon were synthesized by modified polyol reduction. Based on the XRD and TEM results, we confirmed that the reduction time and the ethylene glycol concentration affected the size of Pt nanoparticles. 20Pt/C(M-10), which had the smallest Pt particles among all the catalysts prepared with various reduction conditions, had an average Pt particle size of 1.2 nm with quite a narrow distribution between 0.5 and 2 nm. Moreover, this catalyst showed the greatest EAS area, the highest MOR activity, and the highest ORR activity because of the smallest Pt nanoparticles. In addition, 40Pt/C(M) catalyst synthesized by the optimized reduction condition showed higher EAS and better catalytic activity than a commercial one in PEMFC. The method used in this study provided an easy and reproducible procedure for the preparation of Pt nanoparticles supported on carbon.
An effective method was developed for the preparation of size-controlled Ce0.5Zr0.5O2 in Pt/Ce0.5Zr0.5O2-C electrocatalyst for low-temperature fuel cell. From XRD patterns and TEM images, Pt and Ce0.5Zr0.5O2 nanoparticles were well-dispersed on the carbon support. Catalysts containing Ce0.5Zr0.5O2 showed higher electrochemical activity for oxygen reduction reaction (ORR) than the catalysts without Ce0.5Zr0.5O2 addition because desorption of OH adsorbed on Pt occurred easily. The IR spectra result showed that the ORR activity increased with increasing the amount of coordinated hydroxyl groups on CeO2. It suggested that CeO2 enhanced the ORR activity due to the lateral repulsion between OH adsorbed on Pt and OH coordinated on its neighbor Ce0.5Zr0.5O2.
Core-shell typed PtPd nanoparticles on carbon support were developed to increase the alloyed active surface area. In order to prepare a core-shell structure, all the catalysts were prepared by polyol reduction with a concentration of 27 μM NaOH. In this NaOH concentration, most of Pd precursor changed to Pd(OH)2. During the polyol reduction prodecure, core was formed from Pt precursor and remaining Pd precursor, and then the formed Pd(OH)2 was reduced on the surface of the core. The Pd atoms reduced from Pd(OH)2 was placed on the outside of the nanocores. Resultantly, core(Pt-rich)-shell(Pd)-typed nanoparticles could be prepared by polyol reduction. In order to observe the relation between metal composition and ORR activity, several catalysts with different Pt/Pd ratio were prepared. Among the catalysts, 5Pt1Pd/C showed the highest ORR activity in the kinetic current region (0.85~0.90 V) in spite of larger particle size than that of 7Pt1Pd/C because the 7Pt1Pd/C had insufficient Pd atoms in the shell. From the CO-stripping test, it was observed that Pd atoms in the shell decreased the OH adsorption on the Pt surface.
-
dc.description.tableofcontentsAbstract i
List of Tables viii
List of Figures ix

Chapter 1. Introduction 1
1.1. Fuel cell basics 1
1.1.1. Fuel cells as a electrochemical energy conversion device
1
1.1.2. Polymer electrolyte membrane fuel cell (PEMFC) 3
1.1.3. Electrode reactions 5
1.2. Electrocatalyst 11
1.2.1. De-alloying in bimetallic systems 11
1.2.2.1. Electronic effect 16
1.2.2.2. Geometric effect 19

Chapter 2. Preparation of Pt nanoparticles on carbon support using modified polyol reduction for low-temperature fuel cells 22
2.1. Introduction 22
2.2. Experimental 24
2.2.1. Electrocatalyst preparation 24
2.2.2. Physical characterization 26
2.2.3. Electrochemical activity 27
2.2.4. Single-cell test 27
2.3. Results and discussion 29
2.3.1. 20 wt% Pt/C catalyst characterization 29
2.3.1.1. Physical characterization 29
2.3.1.2. Electrochemical characterizations in a half-cell 33
2.3.2. 40 wt% Pt/C catalyst characterization 40
2.3.2.1 Physical characterization 40
2.3.2.2 Electrochemical characterization in a single-cell 47
2.4. Conclusions 52

Chapter 3. Preparation and characterization of
Pt/Ce0.5Zr0.5O2-C catalyst for ORR 53
3.1. Introduction 53
3.2. Experimental 55
3.2.1. Preparation of Pt/Ce0.5Zr0.5O2-C 55
3.2.2. Physical characterization 56
3.2.3. Electrochemical activity 57
3.3. Results and discussion 58
3.3.1. 10 wt% Ce0.5Zr0.5O2-C support characterization 58
3.3.2. 20 wt% Pt/Ce0.5Zr0.5O2-C catalyst characterization 59
3.3.2.1. Physical characterization 59
3.3.2.2. Electrochemical activity 65
3.4. Conclusions 75

Chapter 4. Development of core-shell typed PtPd/C catalyst for ORR in PEMFC by polyol reduction 76
4.1 Introduction 76
4.2. Experimental 77
4.2.1. Preparation of PtPd/C 77
4.2.2. Physical characterization 78
4.2.3 Electrochemical activity 79
4.3. Results and discussion 80
4.3.1. 3Pt1Pd/C catalyst characterization 80
4.3.2.1. Physical characterization 80
4.3.2.2. Electrochemical activity 93
4.3.2 xPtyPd/C catalyst characterization 102
4.3.2.1. Physical characterization 102
4.3.2.2. Electrochemical activity 106
4.3.3. 5Pt1Pd/Ce0.5Zr0.5O2-C catalyst characterization 112
4.4. Conclusions 120

References 121

Abstract (in Korean) 137
-
dc.formatapplication/pdf-
dc.format.extent13644946 bytes-
dc.format.mediumapplication/pdf-
dc.language.isoen-
dc.publisher서울대학교 대학원-
dc.subjectPolymer electrolyte membrane fuel cell-
dc.subjectPt nanoparticle-
dc.subjectCe0.5Zr0.5O2-
dc.subjectPtPd nanoparticle-
dc.subjectPolyol reduction-
dc.titleStructure control of electrocatalysts for enhanced ORR in PEMFC cathode-
dc.title.alternative고분자 전해질막 연료전지 공기극내 산소환원반응 향상을 위한 전극촉매의 구조 조절-
dc.typeThesis-
dc.contributor.AlternativeAuthorWeon-Doo Lee-
dc.description.degreeDoctor-
dc.citation.pagesxii, 138-
dc.contributor.affiliation공과대학 화학생물공학부-
dc.date.awarded2012-08-
Appears in Collections:
Files in This Item:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share