Publications

Detailed Information

Fabrication of Graphene/Conducting Polymer Nanohybrid Materials and Their Sensor Applications : 그래핀/전도성 고분자 나노하이브리드 물질의 제조 및 센서로의 응용

DC Field Value Language
dc.contributor.advisor장정식-
dc.contributor.author박진욱-
dc.date.accessioned2017-07-13T08:42:24Z-
dc.date.available2017-07-13T08:42:24Z-
dc.date.issued2016-02-
dc.identifier.other000000131913-
dc.identifier.urihttps://hdl.handle.net/10371/119770-
dc.description학위논문 (박사)-- 서울대학교 대학원 : 화학생물공학부, 2016. 2. 장정식.-
dc.description.abstractGraphene/conducting polymer (CP) nanohybrid materials have attracted considerable attention, due to their synergetic effects, including enhanced surface area, charge carrier mobility, thermal/electrical conductivity, and chemical/mechanical stability. To synthesize the graphene/CP nanohybrid materials for using in electronic device applications, covalent and non-covalent synthetic methods have been introduced. Contrary to non-covalent method, covalent functionalization requires time-consuming and harsh conditions, because it needs firstly to introduce functional group on the surface of graphene and CPs. On the other hand, non-covalent functionalization offers facile way to obtain graphene/CP nanohbyrid materials through secondary bonding interactions, such as π–π interactions. In-situ synthetic method, as one of the non-covalent synthetic method, is very promising and powerful tool to design graphene/CP nanohybrids owing to getting uniform nanohbyrid materials. Furthermore, the morphology and shape of the graphene/CP nanohybrids can be controlled by selectively designing the morphology of starting materials (graphene or CP materials).
In this study, various graphene/CP nanohbyrid materials are introduced by using in-situ synthetic method. The synthesized nanohybrid materials exhibit excellent electrical/chemical properties, enabling to be applied in sensor applications. Synergetic effects of graphene/CP nanohbyrid mateirals provide rapid response/recovery time, when using as a transducer in the sensing device. Furthermore, the enlarged surface area from graphene/CP nanohybrids can provide the improved interactions with target analytes, leading to the ultrasensitive sensing performance.
-
dc.description.tableofcontents1. INTRODUCTION 1
1.1. Background 1
1.1.1. Conducting polymers 1
1.1.1.1. Polypyrrole (PPy) 3
1.1.1.2. Poly(3,4,- ethylenedioxythiophene) (PEDOT) 6
1.1.1.3. Polyfuran (PF) 7
1.1.1.4. Polyselenophene (PSe) 8
1.1.1.5. CP nanomaterials 9
1.1.1.5.1 1D CP nanomaterials 11
1.1.1.5.1.1 Self-degradation method 12
1.1.2. Graphene 13
1.1.3. Graphene/conducting polymer nanohybrid mateirals 16
1.1.3.1. Non-covalent graphene-CP nanohybrids 18
1.1.3.2. Covalent graphene-CP nanohybrids 26
1.1.4. Sensor application 28
1.1.4.1. Chemical sensor 30
1.1.4.1.1. Hazardous and toxic gases sensor 31
1.1.4.2. Liquid-ion gated FET-type biosensor 33
1.1.4.2.1. H2O2 FET-type biosensor 35
1.1.4.2.2. Glucose FET-type biosensor 37
1.1.4.2.3. Hg2+ FET-type biosensor 38
1.1.4.3. Piezotronic sensor 39
1.2. Objectives and Outlines 42
1.2.1. Objectives 42
1.2.2. Outlines 43

2. EXPERIMENTAL DETAILS 45
2.1. RGO/PPy NT hybrid materials 45
2.1.1. Fabrication of polypyrrole nanotube embedded reduced graphene oxide transducer for field-effect transistor-type H2O2 biosensor 45
2.1.1.1. Prepartation of PPy NTs 45
2.1.1.2. Prepratation of RGO/PPy NT hybrids 46
2.1.1.3. Fabrication of RGO/PPy NT composite FET sensor 47
2.1.1.4. Characterization of RGO/PPy NT hybrids 48
2.2. RGO/C–PPy NT hybrid materials 49
2.2.1. Fabrication of carboxylated polypyrrole nanotube wrapped graphene sheet transducer for field-effect transistor-type glucose biosensor 49
2.2.1.1. Preparation of C–PPy NTs 49
2.2.1.2. Preparation of RGO/C–PPy NT hybrids 50
2.2.1.3. Fabrication of RGO/C–PPy NT composites FET sensor 51
2.2.1.4. Characterization of RGO/C–PPy NT hybrids 52
2.3. RGO/PF NT hybrid materials 53
2.3.1. Fabrication of reduced graphene oxide-polyfuran nanohybrid for High-performance Hg2+ FET-type sensors 53
2.3.1.1. Prepration of PF NTs 53
2.3.1.2. Prepration of RGO/PF NT hybrids 54
2.3.1.3. Fabrication of RGO/PF NT composite FET sensor 55
2.3.1.4. Characterization of RGO/PF NT hybrids 56
2.4. RGO/PSe nanohybrid materials 57
2.4.1. Fabrication of graphene/polyselenophene nanohybrid materials for highly sensitive and selective chemiresistive sensor 57
2.4.1.1. Preparation of RGO/PSe nanohybrid materials 57
2.4.1.2. Characterization of RGO/PSe nano hybrid materials 58
2.5. CVD graphene/PEDOT/P(VDF-HFP) nanohbyrid mateirals 59
2.5.1. Prepatation of CVD graphene/free-standing PEDOT nanofiber/P(VDF-HFP) nanohbyrid materials 59
2.5.1.1. Prepatation of CVD graphene/free-standing PEDOT nanofiber/P(VDF-HFP) nanohbyrid materials 59
2.5.1.2. Characterization of CVD graphene/PEDOT/P(VDF-HFP) nanohybrid materials 61

3. RESULTS AND DISCUSSION 62
3.1. Fabrication of polypyrrole nanotube embedded reduced graphene oxide transducer for field-effect transistor-type H2O2 biosensor. 62
3.1.1. Fabrication of RGO/PPy NT hybrid materials 62
3.1.2. Electrical performance of RGO/PPy NT hybrid materials 70
3.1.3. FET-type H2O2 biosensor based on RGO/PPy NT hybrid materials 73
3.2. Fabrication of carboxylated polypyrrole nanotube wrapped graphene sheet transducer for field-effect transistor-type glucose biosensor 80
3.2.1. Fabrication of RGO/C–PPy NT hybrid materials 80
3.2.2. Electrical performance of RGO/C–PPy NT hybrid materials 88
3.2.3. FET-type glucose biosensor based on RGO/C–PPy NT hybrid material 91
3.3. Fabrication of reduced graphene oxide-polyfuran nanohybrid for High-performance Hg2+ FET-type sensors 100
3.3.1. Fabrication of RGO/PF NT hybrid materials 100
3.3.2. Electrical performance of RGO/PF NT hybrid materials 106
3.3.3. FET-type Hg2+ biosensor based on RGO/PF NT hybrid materials 110
3.4. Fabrication of graphene/polyselenophene nanohybrid materials for highly sensitive and selective chemiresistive sensor 117
3.4.1. Fabrication of RGO/PSe nanohybrid materials 117
3.4.2. Fabrication of chemiresistive sensor based on RGO/PSe nanohybrid materials 127
3.4.3. Chemiresistive sensing performance of the RGO/PSe nanohybrid film 130
3.5. Fabrication of graphene/free-standing nanofibrillar PEDOT/P(VDF-HFP) hybrid device for wearable and sensitive human motion detective piezo-resistive sensor 135
3.5.1. Fabrication of CVD graphene/free-standing nanofibrillar PEDOT/P(VDF-HFP) nanohbyrid devices 135
3.5.2. Sensing performance of E-skin device 143
3.5.3. Practical application of E-skin device 147

4. CONCLUSIONS 156

REFERENCES 162

국문초록 180
-
dc.formatapplication/pdf-
dc.format.extent11913629 bytes-
dc.format.mediumapplication/pdf-
dc.language.isoen-
dc.publisher서울대학교 대학원-
dc.subjectGraphene-
dc.subjectconducting polymers (CP)-
dc.subjectnanohybrid materials-
dc.subjectField-effect transistor (FET)-
dc.subjectsensor applications-
dc.subject.ddc660-
dc.titleFabrication of Graphene/Conducting Polymer Nanohybrid Materials and Their Sensor Applications-
dc.title.alternative그래핀/전도성 고분자 나노하이브리드 물질의 제조 및 센서로의 응용-
dc.typeThesis-
dc.contributor.AlternativeAuthorJin Wook Park-
dc.description.degreeDoctor-
dc.citation.pages181-
dc.contributor.affiliation공과대학 화학생물공학부-
dc.date.awarded2016-02-
Appears in Collections:
Files in This Item:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share