Publications

Detailed Information

Thermal Phase Fluctuations in a Quasi-2D Bose-Einstein Condensate : 준 이차원 보즈-아인슈타인 응집체에서 일어나는 열적 위상 요동

DC Field Value Language
dc.contributor.advisor신용일-
dc.contributor.author최재윤-
dc.date.accessioned2017-07-14T00:57:59Z-
dc.date.available2017-07-14T00:57:59Z-
dc.date.issued2014-02-
dc.identifier.other000000017675-
dc.identifier.urihttps://hdl.handle.net/10371/121522-
dc.description학위논문 (박사)-- 서울대학교 대학원 : 물리·천문학부(물리학전공), 2014. 2. 신용일.-
dc.description.abstractQuantum gases are well isolated, highly controllable, and defect-free systems which can simulate many body quantum phenomena that have been studied in condensed matter systems. To study two-dimensional superfluid, we have developed an experimental apparatus that can produce Bose-Einstein condensates (BEC) of Na-23 atoms. The apparatus can generate a pure condensate of 10^7 atoms in an optically plugged magnetic quadrupole trap within 17 s.

The Berezinskii-Kosterlitz-Thouless (BKT) theory provides a general framework of the superfluid phase transition in two dimension, which does not involve spontaneous symmetry breaking and emergence of an order parameter below a critical temperature. Instead, it is the formation of vortex pairs with opposite circulations below the critical temperature that mediates the superfluid phase transition. Recently, it has been demonstrated that degenerate Bose gases confined in highly oblate harmonic potentials undergo the BKT phase transition. This thesis focuses on our experimental research on thermal phase fluctuations (i.e., long-wavelength phonons and vortex pairs) in the superfluid phase of trapped quasi-2D BECs. We have developed a quantitative probe to measure phase fluctuations in the 2D superfluid by free expansion, where the phase fluctuations in the sample were revealed as density modulations in the course of expansion. The power spectrum of the density fluctuations showed an oscillatory shape and the scaling behavior of the peak positions could be understood as a Talbot effect in matter waves. Employing this method, we demonstrated the thermal origin of phase fluctuations. We also investigated relaxation dynamics of nonequilibrium states of the quasi-2D system using the power spectrum.

Thermally excited vortex pairs are the characteristic feature of the 2D superfluid. The quantized vortices are conventionally observed by a density-depleted core after expanding a trapped sample. The method, however, cannot be applied to the 2D sample because the density modulations after free expansion lower the vortex core visibility. We enhanced the core visibility by radial compression of the sample before the expansion so the phonon modes in the 2D sample were relaxed in a 3D environment. Measuring vortex distributions, we revealed the pairing feature by spatial correlations of the vortex positions. We also studied BKT-BEC crossover phenomena in a finite-size sample trapped in a quasi-2D harmonic potential by investigating the vortex profiles at various temperatures.

Condensates of atoms have an internal spin structure so they can host various kinds of topological excitations. The two-dimensional Skyrmion is one of the topological spin textures in the anti-ferromagnetic spinor condensate and we imprinted the structure using the magnetic field sweep technique.

The 2D Skyrmion spin texture has a finite Berry curvature because of the non-coplanar spin configuration. We studied a geometric Hall effect, with condensates trapped in a harmonic potential with the Skyrmion spin texture. Under a linear driving of the spin texture, we observed a condensate dipole motion resonantly developed into a circular motion, which demonstrates the existence of an effective Lorentz force.
-
dc.description.tableofcontentsAbstract i
List of Tables ix
List of Figures x
Chapter 1 Introduction
1.1 Bose-Einstein condensates of dilute gases . . . . . . . 4
1.2 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . 7
Chapter 2 Experimental setup
2.1 Laser system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Condensate machine . . . . . . . . . . . . . . . . . . . . . . 21
2.2.1 Oven chamber . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.2 Zeeman slower . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2.3 Main chamber . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.4 Vacuum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2.5 Imaging setup . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.2.6 Control system . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3 Magneto-optical trap . . . . . . . . . . . . . . . . . . . . . . . 34
2.3.1 Dark-MOT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.3.2 Aligning the dark-MOT . . . . . . . . . . . . . . . . . . . . 36
Chapter 3 Evaporative cooling to Bose-Einstein condensates
3.1 Optically plugged magnetic quadrupole trap . . . . . . . 41
3.2 Bose-Einstein condensation. . . . . . . . . . . . . . . . . . 45
3.2.1 Radio frequency-induced evaporative cooling. . . . . 45
3.2.2 Producing Bose-Eisntein condensates . . . . . . . . . 52
3.3 Characterizing evaporation process . . . . . . . . . . . . 54
3.3.1 Rate equations for atom number and temperature . .54
3.3.2 Suppression of the non-adiabatic spin flip . . . . . . . 55
3.3.3 Numerical simulation of the evaporation process . . 57
Chapter 4 Phase fluctuations in a two-dimensional Bose gas
4.1 Phase transition in two dimensional Bose system. . . 64
4.1.1 Absence of Bose-Einstein condensation . . . . . . . . 64
4.1.2 Berezinskii-Kosteriltz-Thouless phase transition . . 66
4.1.3 Weakly interacting Bose gas in two dimension . . . .69
4.2 Qausi-two dimensional degenerate Bose gas . . . . . 72
4.2.1 Optical dipole trap . . . . . . . . . . . . . . . . . . . . . . . 72
4.2.2 Preparing degnerate Bose gas . . . . . . . . . . . . . . . 72
4.3 Probing thermal phase fluctuations by free expansion 77
4.3.1 Power spectrum of density fluctuations . . . . . . . . . 80
4.3.2 Thermal dependences of the phase fluctuations. . . 84
4.3.3 Non-equilibrium relaxation process. . . . . . . . . . . . 86
4.4 Observation of thermal vortex pairs in superfluid . . . . 88
4.4.1 Radial compression . . . . . . . . . . . . . . . . . . . . . . 89
4.4.2 Pair correlation. . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.4.3 BKT-BEC crossover. . . . . . . . . . . . . . . . . . . . . . 95
4.4.4 Effects of the radial compression. . . . . . . . . . . . . 103
Chapter 5 Two-dimensional Skyrmion in a spinor condensate
5.1 Classification of topological excitations . . . . . . . . . 114
5.2 Polar phase vs ferromagnetic phase of spin-1 condensates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.3 Spin texture imprinting by spin rotation . . . . . . . . . .122
5.3.1 Spin tilting by B-field rotation . . . . . . . . . . . . . . . 122
5.3.2 Skyrmion spin texture with a magnetic quadrupole field.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.3.3 Experimental results . . . . . . . . . . . . . . . . . . . . . 124
5.3.4 Characterization of the imprinting method . . . . . . 128
5.4 Topological Skyrmions. . . . . . . . . . . . . . . . . . . . . 131
5.4.1 Skyrmions in polar phase. . . . . . . . . . . . . . . . . . 131
5.4.2 Creation of highly charged Skyrmions . . . . . . . . . 133
5.4.3 Dynamical evolution of the Skyrmion . . . . . . . . . . 135
5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
Chapter 6 Geometric Hall effect with a Skyrmion spin texture
6.1 Gauge potential in a magnetic quadrupole field . . . . 151
6.2 Vortex ground state under the monopole gauge field 157
6.3 Geometric Hall effect in a spinor BEC . . . . . . . . . . .160
6.3.1 Sample preparation . . . . . . . . . . . . . . . . . . . . . 164
6.3.2 Emergence of Hall motion . . . . . . . . . . . . . . . . . 167
6.3.3 Quantized vortices in the circulating condensates. 171
Chapter 7 Conclusions
Appendix A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
Appendix B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
Appendix C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
Appendix D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
Appendix E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
Appendix F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
Appendix G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
Appendix H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
Appendix I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
Appendix J . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

국문 초록 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
감사의 글 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
-
dc.formatapplication/pdf-
dc.format.extent18197266 bytes-
dc.format.mediumapplication/pdf-
dc.language.isoen-
dc.publisher서울대학교 대학원-
dc.subjectBose-Einstein condensation-
dc.subjectBerezinskii-Kosterlitz-Thouless phase transition-
dc.subjectthermal phase fluctuations-
dc.subjectquantum vortex-
dc.subjectSkyrmion-
dc.subjectBerry phase.-
dc.subject.ddc523-
dc.titleThermal Phase Fluctuations in a Quasi-2D Bose-Einstein Condensate-
dc.title.alternative준 이차원 보즈-아인슈타인 응집체에서 일어나는 열적 위상 요동-
dc.typeThesis-
dc.description.degreeDoctor-
dc.citation.pagesxiv, 205-
dc.contributor.affiliation자연과학대학 물리·천문학부(물리학전공)-
dc.date.awarded2014-02-
Appears in Collections:
Files in This Item:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share