Publications

Detailed Information

Improvement of outcoupling efficiency in organic light-emitting diodes using multilayer electrode : 다층박막 전극을 사용한 유기발광다이오드의 광추출 효율 향상

Cited 0 time in Web of Science Cited 0 time in Scopus
Authors

EvgenyKornev

Advisor
ChangHee Lee
Major
공과대학 전기·컴퓨터공학부
Issue Date
2014-08
Publisher
서울대학교 대학원
Keywords
OLEDmicro-cavityDMD-electrode유기 발광 다이오드마이크로공동효과유전체-금속-유전체 구조
Description
학위논문 (석사)-- 서울대학교 대학원 : 전기·컴퓨터공학부, 2014. 8. 이창희.
Abstract
본 논문은 유전체-금속-유전체 구조(DMD구조)의 투명한 양 극전극을 사용하여 유기 발광 다이오드 (Organic Light-Emitting Diodes, OLEDs)의 효율을 향상시키고 그에 관하여 분석한 연구이다. 양극전극으로는 정공주입 완충층으로 MoO3를 사용하고 반투 명한 금속 (금 또는 은)과 고굴절률 유전체인 HfO2를 사용하였다. 유리 기판에 스핀코팅한 박막HfO2로 광학적 특성을 분석하였고, 스핀코팅과 열처리 조건을 달리하여 두께와 표면 거칠기에 관한 분석을 진행하였다. 또한 광학 시뮬레이션을 통하여 금(Au) 박 막15nm, HfO2 박막 66nm에서 520nm파장의 마이크로 공동효과가 극대화됨을 확인하였다. 이러한 분석들을 토대로 유리기판을 사용한 녹색 유기발광다 이오드소자를제작하였다.소자의구조는다음과같은HfO2 (x nm)
/Au (15 nm) /MoO3/di-[4-(N,N-ditolyl-amino)-phenyl]cyclohexane
[TAPC] ( 50 nm) /4,4-Bis(carbazol-9-yl)biphenyl [CBP] :[acetylacetonatobis
(2-phenylpyridine)]iridium [Ir(ppy)2](8%, 30 nm)/[1,3,5- tris(1-phenyl-1H-benzimidazol-2-yl)]benzene[TPBi] (40 nm)/LiF (1 nm)/Al (100 nm) 구조를 적용하였다. 시뮬레이션과 실제 실험의 상관관계를 분석하기 위하여 HfO2 박막의 두께는 60nm부터 90nm 까지 변화시켰다. 또한 ITO 양극을 사용한 기존의 녹색 유기발광 다이오드도 함께 제작하여 비교, 분석하였다.
DMD 구조 전극을 사용한 소자의 피크 효율은 (외부양자효율 20.53%, 발광효율 77.82 cd/A, 전력효율 43.27 lm/W)이 기존의 ITO전극 사용 소자의 피크 효율(외부양자효율 11.78%, 발광효율 42.47 cd/A, 전력효율 21.78 lm/W) 대비 70%의 향상을 보였다.
(1000 cd/m2 기준)
또한 은(Ag) 박막을 사용한 DMD구조 소자는 은의 우수한 광 학 투과율에 의해 외부양자효율 22.43%의 고효율을 달성하였다. (1000 cd/m2 기준)
In this work we report highly efficient organic light emitting diode (OLED) based on dielectric/metal/dielectric (DMD) structured transparent anode. This anode consists of MoO3 as a hole-injection buffer layer, semitransparent metal (Au or Ag) and HfO2 as a high refractive index dielectric material. The optical properties of HfO2 were studied and a HfO2 thin film was spin-coated on the glass substrate. Based on morphology and ellipsometry measurements, the appropriate spin-coating condition and annealing temperature were selected. Further optical calculation shows that the highest micro-cavity effect at 520 nm occurs around the thickness of materials of 15 and 66 nm for Au and HfO2 respectively.Combining all of the measurements above, green OLED device on the glass substrate was fabricated with the structure of HfO2 (x nm) /Au (15 nm) /MoO3/di-
[4-(N,N-ditolyl-amino)-phenyl]cyclohexane[TAPC] ( 50 nm) /4,4-
Bis(carbazol-9-yl)biphenyl [CBP] :[acetylacetonatobis
(2-phenylpyridine)]iridium [Ir(ppy)2](8%, 30 nm)/[1,3,5-tris(1-phenyl-
1H-benzimidazol-2-yl)]benzene[TPBi] (40 nm)/LiF (1 nm)/Al (100 nm). The thickness of HfO2 was varied from 60 to 90 nm to check the correlation between optical simulation and experimental results. Also the conventional green OLED device based on ITO anode was fabricated as a reference. The measured peak efficiencies of the devices with DMD electrode showed enhancement more over than 70% with external quantum efficiency (EQE) (20,53 %),luminous current efficiency (LCE) (77,82 cd/A),power efficiency (PE) (43,27 lm/W) versus to EQE(11,78 %),LCE (42,47 cd/A),PE (21,78 lm/W) for ITO based anode at 1000 cd/m2. The device with Ag in the DMD structure
was improved even more due to a better optical transmittance of silver in the optical region and EQE reached to 22.43% at 1000 cd/m2.
Language
English
URI
https://hdl.handle.net/10371/123076
Files in This Item:
Appears in Collections:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share