Publications

Detailed Information

Novel electron donating π-conjugated organic materials based on indoloindole unit : synthesis, characterization and optoelectronic application : 인돌로인돌을 기반으로 한 새로운 전자주개 공액 유기 물질 : 합성, 특성 분석, 그리고 광전자소자로의 응용에 대한 연구

Cited 0 time in Web of Science Cited 0 time in Scopus
Authors

정혜연

Advisor
박수영
Major
공과대학 재료공학부
Issue Date
2014-02
Publisher
서울대학교 대학원
Keywords
indoloindoleheteroarene-containing fused aromatic systemcharge-transfer complexsingle-crystal organic field-effect transistororganic solar cell
Description
학위논문 (석사)-- 서울대학교 대학원 : 재료공학부, 2014. 2. 박수영.
Abstract
Heteroacene-containing fused aromatic system has been extensively investigated in the area of fundamental study of molecular property and application to organic devices based on unique photophysical and electronic properties. Recently, heteroacenes have been emerged as a promising backbone unit of organic semiconducting materials due to their remarkable charge carrier mobility, and excellent environmental stability. Among various heteroacens, pyrrole-containing heteroacene backbone exhibits strong electron donating nature originating from the low ionization potential, and possesses planar structure, controllable solubility, and easy functionalization. Based on thier unique properties, indolo[3,2-b]indole, which is one of the pyrrole-containing heteroacene, is suitable for the semiconducting material in optoelectronic system.
Herein, I designed and characterized indolo[3,2-b]indole (IDID) derivatives. By UV/vis spectroscopy and measurement of energy levels, IDID derivatives are clearly confirmed as strong electron donor. To explore electron donating nature of IDID derivatives, I carried out CT complex formation using IDID derivatives as an electron donor, and 2,7-dinitro-9-fluorenone (DNF), and 2,4,7-trinitro-9-fluorenone (TNF), and 7,7,8,8-tetracyanoquinodimethane (TCNQ) as an electron acceptor. Through analyzing the photophysical properties of CT complexes, IDID derivatives were proven to be excellent donor materials for the formation of ground state CT complex with acceptors. Furthermore, using CT co-crystals of IDIDp-TCNQ as the semiconducting active elements, single-crystal OFETs were prepared by solvent vapor annealing (SVA) process, which showed ambipolar p-/n- type field effect mobility up to 1.27x10-3 cm2V-1s-1and 3.40x10-2 cm2V-1s-1, respectively. On the other hand, IDIDp single-crystal OFETs showed only p-type field effect mobility up to 2.29x10-2 cm2V-1s-1.
Secondly, using strong donating nature of IDID core and intramolecular charge transfer (ICT) characteristic of the acceptor-substituted IDID, I designed and synthesized low bandgap A-D-A and D-A-D type triad molecules using IDID as a donor moiety and DPP as an acceptor moiety for high efficiency bulk-heterojunction small molecule organic solar cell (SMOSC). Through comparing optical, electrochemical properties and device performances of A-D-A and D-A-D type IDID-DPP derivatives, A-D-A type triad molecule was found to be an excellent donor molecule in OSCs, where solution processed organic solar cells based on a blend of HD-IDID-EH-DPP as a donor and [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) as an acceptor exhibited VOC of 0.73 V, JSC of 10.24 mAcm-2, FF of 55.6% and PCEs as high as 4.15%. On the other hand, organic solar cells based on a blend of HD-DPP-EH-IDID as a donor and and PC61BM as an acceptor exhibited VOC of 0.64 V, JSC of 4.23 mAcm-2, FF of 54.0% and PCEs as high as 1.46%.
Language
English
URI
https://hdl.handle.net/10371/123303
Files in This Item:
Appears in Collections:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share