Publications

Detailed Information

Evolutionary Machine Learning of Higher Order Relationships in Genome-wide Sequence Analysis : 유전체 서열 분석에서 고차 관계의 진화적 기계학습

DC Field Value Language
dc.contributor.advisor장병탁-
dc.contributor.author이제근-
dc.date.accessioned2017-07-14T06:01:40Z-
dc.date.available2017-07-14T06:01:40Z-
dc.date.issued2014-02-
dc.identifier.other000000017660-
dc.identifier.urihttps://hdl.handle.net/10371/125374-
dc.description학위논문 (박사)-- 서울대학교 대학원 : 협동과정 생물정보학전공, 2014. 2. 장병탁.-
dc.description.abstractOne of the basic research goals in life science is to understand the complex relationships between biological factors and phenotypes, and to identify the various factors affecting the phenotype. In particular, genomic sequences play a significant role in determining the phenotype, such as gene expression and a susceptibility to disease, so the studies for the fundamental information stored in genome is essential to understanding biological processes. Previous genomic sequence analyses mainly focused on identification of a single associated factor or pairwise relationships with significant effects. Recent development of high-throughput technologies has made it possible to identify the causal factors by carrying out genome-wide analysis. However, it still remains as a challenge to discover higher-order interactions of multiple factors because this involves huge search spaces and computational costs.

In this dissertation, we develop effective methods for identifying the higher-order relationships of sequence elements affecting the phenotype, by combining statistical learning with evolutionary computation. The methods are applied to finding the associated combinatorial factors and dysfunctional modules in various genome-wide sequence analysis problems. Firstly, we show statistical learning-based methods to detect co-regulatory sequence motifs and to investigate combinatorial effects of DNA methylation, affecting on
downstream gene expression. Next, to examine the sequence datasets with a huge number of attributes on human genome, we apply evolutionary computation approaches. Our methods search the problem feature space based on machine learning techniques using training datasets in evolutionary computation processes and are able to find candidate solution well in computationally expensive optimization problems. The experimental results show that the approaches are useful to find the higher-order relationships associated to disease using genomic and epigenomic datasets. In conclusion, our studies would provide practical methods to analyze complex interactions among sequence elements in genomic/epigenomic studies.
-
dc.description.tableofcontentsAbstract i
1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Organization of the dissertation . . . . . . . . . . . . . . . . . . . . . 7
2 Genome biology and computational analysis 9
2.1 Fundamentals of genome biology . . . . . . . . . . . . . . . . . . . . 9
2.1.1 DNA, gene, chromosomes and cell biology . . . . . . . . . . . 9
2.1.2 Gene expression and regulation . . . . . . . . . . . . . . . . . 10
2.1.3 Genomics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.4 Epigenomics . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Evolutionary machine learning . . . . . . . . . . . . . . . . . . . . . 13
2.2.1 Machine learning and evolutionary computation . . . . . . . 13
2.2.2 Evolutionary computation in biology . . . . . . . . . . . . . . 13
3 Identifying co-regulatory sequence motifs 16
3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.1 Investigation of the relationship between regulatory sequence
motifs and expression prolfies . . . . . . . . . . . . . . . . . . 18
3.2.2 Preparation of the gene expression datasets . . . . . . . . . . 21
3.2.3 Preparation of the gene sequence datasets . . . . . . . . . . . 22
3.2.4 Measurement of the eect of motif combinations . . . . . . . 23
3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3.1 Identication of the relationship between gene expression and
known motifs . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.2 Identification of cell cycle-related motifs . . . . . . . . . . . . 28
3.3.3 Combinational effects of regulatory motifs . . . . . . . . . . . 30
3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4 Investigation of combinatorial eects of DNA methylation 35
4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 Materials and methods . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2.2 Proling of DNA methylation patterns . . . . . . . . . . . . . 39
4.2.3 Identifying differentially methylated/expressed genes by information
theoretic analysis . . . . . . . . . . . . . . . . . . . . 39
4.2.4 Identifying downregulated genes in each subtype for integrative
analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2.5 Correlation between DNA methylation and gene expression . 41
4.2.6 Combinatorial effects of DNA methylation in various genomic
regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2.7 Analysis of transcription factor binding regions possibly blocked
by DNA methylation . . . . . . . . . . . . . . . . . . . . . . . 43
4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3.1 DNA methylation in 30 ICBP cell lines . . . . . . . . . . . . 44
4.3.2 Information theoretic analysis of phenotype-differentially methylated
and expressed genes . . . . . . . . . . . . . . . . . . . . 45
4.3.3 Integrated analysis of DNA methylation and gene expression 47
4.3.4 Investigation of the combinatorial eects of DNA methylation
in various regions on downstream gene expression levels . . . 52
4.3.5 Integrative analysis of transcription factors, DNA methylation
and gene expression . . . . . . . . . . . . . . . . . . . . . . . 56
4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5 Detecting multiple SNP interaction via evolutionary learning 63
5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.2 Materials and methods . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.2.1 Identifying higher-order interaction of SNPs . . . . . . . . . . 65
5.2.2 Algorithm Description . . . . . . . . . . . . . . . . . . . . . . 66
5.2.3 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.3.1 Identifying interaction between features in simulation data . 72
5.3.2 Identifying higher-order SNP interactions in Korean population 74
5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6 Identifying DNA methylation modules by probabilistic evolution-
ary learning 85
6.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.2.1 Evolutionary learning procedure to identify a set of DNA methylation
sites associated to disease . . . . . . . . . . . . . . . . 87
6.2.2 Learning dependency graph . . . . . . . . . . . . . . . . . . . 88
6.2.3 Fitness evaluation in population . . . . . . . . . . . . . . . . 90
6.2.4 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.3.1 DNA methylation modules associated to breast cancer . . . 92
6.3.2 Modules associated to colorectal cancer using high-throughput
sequencing data . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
7 Conclusion 104
Bibliography 106
초록 133
-
dc.formatapplication/pdf-
dc.format.extent11622612 bytes-
dc.format.mediumapplication/pdf-
dc.language.isoen-
dc.publisher서울대학교 대학원-
dc.subjectHigher-order interaction-
dc.subjectEvolutionary computation-
dc.subjectGenome-wide sequence analysis-
dc.subjectMachine learning-
dc.subjectGenomics-
dc.subjectEpigenomics-
dc.subject.ddc574-
dc.titleEvolutionary Machine Learning of Higher Order Relationships in Genome-wide Sequence Analysis-
dc.title.alternative유전체 서열 분석에서 고차 관계의 진화적 기계학습-
dc.typeThesis-
dc.contributor.AlternativeAuthorRhee, Je-Keun-
dc.description.degreeDoctor-
dc.citation.pagesx, 135-
dc.contributor.affiliation자연과학대학 협동과정 생물정보학전공-
dc.date.awarded2014-02-
Appears in Collections:
Files in This Item:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share