Publications

Detailed Information

Genome Divergence between Vigna angularis & Vigna nakashimae

DC Field Value Language
dc.contributor.advisorSuk Ha Lee-
dc.contributor.author쿠쉬부-
dc.date.accessioned2017-07-14T06:30:20Z-
dc.date.available2017-07-14T06:30:20Z-
dc.date.issued2014-02-
dc.identifier.other000000018287-
dc.identifier.urihttps://hdl.handle.net/10371/125646-
dc.description학위논문 (석사)-- 서울대학교 대학원 : 식물생산과학부(작물생명과학전공), 2014. 2. Suk Ha Lee.-
dc.description.abstractThe Azuki bean, Vigna angularis (2n=2x=22), is one of the important legume crop grown in the world. Comparing the genome of domesticated (Vigna angularis) and undomesticated (Vigna nakashimae) forms of Azuki bean can facilitate crop improvement. We used the Next-generation massively parallel DNA sequencing technologies which provide ultrahigh throughput at a substantially lower unit data cost. However, the data generated is very short read length sequences and constructing de novo assembly from it is extremely challenging. Here, we describe a novel method for finding genome divergence between the domesticated and the wild variety of Azuki bean. We de novo sequenced and assembled the Vigna angularis and Vigna nakashimae genome, achieving an N50 contig size of approximately 11 and 7 kilo base pairs (kbp) respectively. The genome size of Azuki bean is estimated to be around 545 mega-bases (Mb). We predicted 45,985 protein-coding genes in Vigna angularis, 70% more than that of Arabidopsis, approximately similar to poplar and soybean. For Vigna nakashimae we predicted 38,965 protein-coding genes which is 40% more than Arabidopsis and approximately similar to potato. Vigna angularis diverged from Vigna nakashimae approximately 1.9 million years ago. The data obtained from structural translocations and gene categories from the evolutionary relationship between Vigna angularis and Vigna nakashimae suggest that these genes can be a probable cause for the domestication of Azuki bean. The development of this de novo short read assembly method creates new opportunities for building reference genome and carrying out accurate analyses of unexplored genomes in a cost effective manner as well as overcomes the limitations of the re-sequencing method for discovering structural translocations.-
dc.description.tableofcontentsCONTENTS

ABSTRACT …………………………………………………………… i
CONTENTS …………………………………………………………… iii
LIST OF TABLES …………………………………………………….. v
LIST OF FIGURES …………………………………………………… vi
INTRODUCTION …………………………………………………….. 1
LITERATURE REVIEW
Next Generation Sequencing Technology ………..……………….. 4
De Novo Assembly ….……………………………….……………. 7
Structural Variation ...……………………………………………… 8
Synonymous Substitutions, Non-Synonymous Substitutions and Evolutionary Time …………….………………………………….. 10
MATERIALS AND METHODS
De Novo Sequencing ………………………………………………. 11
De Novo Assembly ………………………………………………... 11
Ab initio gene prediction ………………………………………….. 12
Homology search ………………………………………………….. 12
Synteny and Evolutionary relationship ……………………………. 13
Structural Translocations ………………………………………….. 14
Divergence Time …………………………………………………... 14
Specific Gene Categories …….……………. …………………….. 15
RESULTS
Overview of De Novo Sequencing and Assembly …….…..….….. 16
Estimating Genome Size ……..………………………...…………. 19
Ab initio gene prediction and Homology search ….……..….…….. 20
Syntenic Regions …………………………..……………………… 20
Evolutionary Relationship ………………..……………………….. 21
Divergence Time …………………………………………………... 25
Structural Translocations and Synteny Pairs ……………………… 25
Specific Gene Categories …….……………. …………………….. 33
DISCUSSION …………………………………………………………. 40
REFERENCES.…………………………………………..………......... 44
ABSTRACT IN KOREAN ……………………………………………. 49


LIST OF TABLES

Table 1. Some important tools for analysis of NGS data 6
Table 2. Sequencing status of 2 deep sequenced accession 17
Table 3. ABySS Genome Assembly results 18
Table 4. Ab-initio Gene Prediction result 22
Table 5. Syntenic region between Vigna angularis and
Vigna nakashimae 23
Table 6. Structural Translocations and Synteny Pairs between Vigna angularis and Vigna nakashimae 27
Table 7. Peak 1: Specific gene category – Retained 34
Table 8. Peak 2: Specific gene category – Retained 37
Table 9. Peak 3: Specific gene category - Diverged 39



LIST OF FIGURES

Figure 1. Distribution of Ka/Ks for the gene pair in order to find the evolutionary changes between Vigna angularis and Vigna nakashimae.
24
Figure 2. Frequency distribution for the synonymous substitution rate, for estimating the divergence time between
Vigna angularis and Vigna nakashimae.
26
Figure 3. Synteny pairs and Structural Translocation between
Vigna angularis and Vigna nakashimae.
32
-
dc.formatapplication/pdf-
dc.format.extent2265718 bytes-
dc.format.mediumapplication/pdf-
dc.language.isoen-
dc.publisher서울대학교 대학원-
dc.subjectVigna angularis-
dc.subjectVigna nakashimae-
dc.subjectstructural translocations-
dc.subjectdom estication-
dc.subjectgenome divergence-
dc.subjectNext-generation sequencing.-
dc.subject.ddc633-
dc.titleGenome Divergence between Vigna angularis & Vigna nakashimae-
dc.typeThesis-
dc.description.degreeMaster-
dc.citation.pages60-
dc.contributor.affiliation농업생명과학대학 식물생산과학부(작물생명과학전공)-
dc.date.awarded2014-02-
Appears in Collections:
Files in This Item:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share