Publications

Detailed Information

Lattice Non-perturbative Renormalization and Application to Weak CP Violation : 격자 비섭동적 재규격화와 약력의 CP 깨짐에 대한 적용

DC Field Value Language
dc.contributor.advisor이원종-
dc.contributor.author김장호-
dc.date.accessioned2017-07-19T06:06:52Z-
dc.date.available2017-07-19T06:06:52Z-
dc.date.issued2015-02-
dc.identifier.other000000024988-
dc.identifier.urihttp://dcollection.snu.ac.kr:80/jsp/common/DcLoOrgPer.jsp?sItemId=000000024988-
dc.description학위논문(박사)--서울대학교 대학원 :자연과학대학 물리·천문학부,2015. 2. 이원종.-
dc.description.abstractCP violation was first discovered in the Kaon system in 1964. K^0 and \bar{K}^0 are flavor eigenstates. They are mixed together by weak interaction in nature. The mass eigenstates K_L can decay to two pion state in two ways. First, the CP odd component in KL decay to the two pion states. It is called direct CP violation and parametrized by ε'. Another way is that the CP even component in K_L decay to the two pion states. it does not breaking CP symmetry but the existence of CP even compoenet in K_L indicates the CP violation. Therefore, it is called indirect CP violation and parametrized by ε_K .
ε_K is the indirect CP violation parameter and very well known from experiments. ε_K can be written in terms of B_K which contains all the non-perturbative QCD contributions for ε_K. Current estimate of ε_K with exclusive V_cb and B_K computed in SWME collaboration has 3.7 σ difference between the result of experiment and those of standard model theory. Hence, it is very important to reduce the theoratical error of ε_K . The most dominant error of ε_K comes from
-
dc.description.abstractVcb-
dc.description.abstractbut the second dominant error comes from B_K. In our calculation, one of the dominant source of B_K error comes from the matching factor. One-loop perturbative matching has 4.4% systematic error for B_K. The non-perturbative renormalization (NPR) method can reduce this error down to 2% level. Using NPR method with Regularization Independent Momentum Subtraction (RI-MOM) scheme, we calculate the wave function renormalization factor Z_q from conserved vector and axial currents and the mass renormalization factor Z_m from scalar and pseudo-scalar staggered bilinear operators. We obtain the results of the matching factor for the staggered four-fermion operators relevant to B_K using NPR method in RI-MOM scheme. We compare the NPR results with those of one-loop perturbation theory and they are consistent within 2σ. furthermore, the error of the NPR results are about half of the those of one- loop perturbation theory. For further research, we plan to apply NPR method in RI-SMOM (symmetric momentumi condition) scheme.-
dc.description.abstractCP 깨짐은 1964년에 케이온 시스템에서 처음으로 발견되었다. K^0와 \bar{K}^0는 약력에 의해서 서로 섞이게 되고 질량 고유상태인 K_L과 K_S 으로 존재하게 된다. K_L이 파이온 두개로 붕괴하는 과정에서 CP 깨짐이 발생하게 되는데 직접 깨짐과 간접 깨짐이 있다. 여가서 간접 깨짐을 설명하는 매개변수가 ε_K이다. CP 깨짐 매개변수인 ε_K 는 실험적으로 매우 잘 알려져있다. 그러므로 ε_K 를 격자 게이지 이론을 이용해서 정밀하게 계산하는 것은 표준모형을 검증할 수 있는 아주 중요한 수단이다. ε_K 의 현재 이론적인 계산 결과는 실험값과 3.7 σ의 격자를 보여주고 있다. 이론적인 계산의 주요 오차 원인 중에 하나는 B_K 의 맞춤인자로부터 온다. 격자 섭동 이론을 이용해서 계산된 B_K 의 일차 맞춤인자에서 오는 계통 오차는 4.4%이다. 반면에 비섭동적 재규격화 방법을 이용하면 이 계통 오차를 2% 아래로 줄일 수 있다. 우리는 보존되는 벡터 흐름과 축벡터 흐름 연산자를 이용하여 파동 함수의 재규격화 인자를 계산하였고 스칼라와 유사스칼라 연산자를 이용하여 질량 재규격화 인자를 계산하였다. 또한 4차 페르미온 연산자를 이용하여 B_K 의 맞춤인자도 계산을 하였다. 우리는 이 결과를 일차 섭동 이론으로 계산된 값과 비 교를 하였으며 2σ 이내에서 일치함을 보였다. 이는 비섭동적 방법으로 얻은 결과가 타당함을 일걷는다. 또한 일차 섭동 이론의 결과보다 오차가 절반이상 줄어든 것을 알 수 있다.-
dc.description.tableofcontents1 Introduction 1
1.1 Motivation 1
1.2 QCD 2
1.3 Lattice QCD 4
1.4 Staggered Fermions 7
1.5 CP Violation 11
2 RI-MOM Scheme for Quark Propagators in Continuum 17
3 RI-MOM Scheme for Bilinear Operator in Continuum 21
3.1 Wave Function Renormalization Factor Z_q in continuum 29
3.2 Quark Mass Renormalization Factor Z_m in Continuum 31
3.3 Other Bilinear Operators in Continuum 32
4 RI-MOM Scheme for Four Fermion Operator in Continuum 33
5 Non-perturbative Renormalization for Staggered Quark Propagators 39
5.1 NPR for Staggered Quark Propagator 39
5.2 Results of Self-energy Analysis 43
6 Non-perturbative Renormalization for Staggered Bilinear Operators 51
6.1 NPR for Staggered Bilinear Operators 51
6.1.1 Simulation Details 54
6.2 Wave function renormalization 55
6.2.1 Z_q from Conserved Vector Current 55
6.2.1.1 Pole-fit method for Conserved Vector Current . . 62
6.2.2 Z_q from Conserved Axial Current 67
6.2.2.1 Pole-fit method for Conserved Axial Current . . . 72
6.2.3 Systematic Error of Z_q 76
6.3 Mass Renormalization 79
6.3.1 Mass Renormalization Factor from S ⊗ S Operator 80
6.3.2 Mass Renormalization Factor from P ⊗ P Operator 85
6.3.3 Error Budget of Z_m 92
6.4 Renormalization Factor of Other Bilinear Operators 94
6.4.1 Renormalization Factor of Tensor Operator with Scalar taste 94
6.4.2 Renormalization Factor of Tensor Operator with pseudo-scalar taste 100
6.4.3 Systematic Error of the Renormalization Factor of Tensor Operator 104
6.5 Off-diagonal Analysis 106
6.6 Result 112
7 Non-perturbative Renormalization for Staggered Four-fermion Operators 119
7.1 NPR for Staggered Four-fermion Operators 119
7.2 NPR for B_K operator 122
7.3 Results 127
7.3.1 Diagonal Terms 127
7.3.2 Off-diagonal Terms 134
7.3.3 Systematic Error 139
8 Conclusion and Discussion 143
A Ward-Takahashi Identity in Continuum 145
A.1 Conserved Vector Current 145
A.2 Conserved Axial Current 148
B Renormalization Factor for Conserved Currents in Continuum 151
B.1 Conserved Vector Current 151
B.2 Conserved Axial Current 152
C Ward-Takahashi Identity for Staggered Fermions 153
C.1 Conserved Vector Current 153
C.2 Conserved Axial Current 156
D Renormalization Factor for Conserved Currents for Staggered Fermions 159
D.1 Conserved Vector Current. . . . . . . . . . . . . . . . . . . . . . . 159
D.2 Conserved Axial Current .. . . . . . . . . . . . . . . . . . . . . . . 160
E Amputated Greens Function for Staggered Bilinear Operators 163
F The RG Running Formula 167
F.1 β-function 167
F.2 Anomalous Dimension for Quark Mass 167
F.3 Anomalous Dimension for Quark Field 168
F.4 Anomalous Dimension for Bilinear Operators 170
F.5 RG Running for B_K 171
G The Conversion Factors from RI-MOM to MSbar 175
G.1 The Conversion Factor of Wave Function Renormalization Factor
Zq 175
G.2 The Conversion Factor of Mass Renormalization Factor Z_m 175
G.3 The Conversion Factor of Tensor Bilinear Operator Renormalization Factor Z_T 176
G.4 RI-MOM → MSbar Scheme using Fixed Point for B_K 176
H Weinberg Theorem 179
I One-loop Perturbation Theory 181
국문초록 189
-
dc.format.extent188-
dc.language.isoeng-
dc.publisher서울대학교 대학원-
dc.subjectQCD, Lattice, Staggered Fermions, Non-perturbative Renormalization, epsilon_K, B_K-
dc.subject.ddc523-
dc.titleLattice Non-perturbative Renormalization and Application to Weak CP Violation-
dc.title.alternative격자 비섭동적 재규격화와 약력의 CP 깨짐에 대한 적용-
dc.typeThesis-
dc.typeDissertation-
dc.contributor.AlternativeAuthorJangho Kim-
dc.contributor.department자연과학대학 물리·천문학부-
dc.description.degreeDoctor-
dc.date.awarded2015-02-
dc.contributor.major물리학-
dc.identifier.holdings000000000021▲000000000023▲000000024988▲-
Appears in Collections:
Files in This Item:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share