Publications

Detailed Information

Antimicrobial resistance and possible transmission of Escherichia coli between companion animals and related-personnels : 반려동물과 관련∙종사자에서 분리된 항생제 내성 대장균의 상관성 분석

Cited 0 time in Web of Science Cited 0 time in Scopus
Authors

정연수

Advisor
박용호
Major
수의과대학 수의학과
Issue Date
2017-08
Publisher
서울대학교 대학원
Keywords
Antimicrobial resistanceEscherichia colione healthhorsescompanion animal-ownersnon-ownersfluoroquinolone
Description
학위논문 (박사)-- 서울대학교 대학원 수의과대학 수의학과, 2017. 8. 박용호.
Abstract
Livestocks today are not that much more valuable than they were long ago, we treat our companion animals as if they were far more valuable. In addition, we have seen a huge switch in animal medicine, from a focus on livestocks to a focus on companion animals such as horses, dogs and cats. In the Korean companion animal industry, the market size associated with companion animals is rapidly increasing and estimated to be $5.4 billion by 2020. In addition, more and more Korean people have recognized the importance of horse industry according to the increasing trend of horse-riding. However, limited information is available regarding horse-associated antimicrobial resistant (AR) bacteria in Korea.
As first study, we evaluated the frequency and characterize the pattern of AR Escherichia coli (E. coli) from healthy horse-associated samples. Thirty of the E. coli isolates (21%) showed antimicrobial resistance to at least one antimicrobial agent, and four of the AR E. coli (13.3%) were defined as multi-drug resistance. Pulsed-field gel electrophoretic analysis showed the cross-transmissions between horses or horses and environments were detected in two facilities. Although cross-transmission of AR E. coli in horses and their environments was generally low, our study suggests a risk of transmission of AR bacteria between horses and humans.
Quinolone (Q) and fluoroquinolone (FQ) are broad-spectrum synthetic antimicrobials used to treat bacterial infections in humans and animals. Since they are very potent antimicrobial agents against Gram-negative bacteria including E. coli, these agents have been widely used to treat a range of infections in companion animals. Consequently, (F)Q resistance has markedly increased worldwide, posing a significant threat to the health of animals and humans. In the second study, we investigated the prevalence and the mechanisms of FQ/Q resistance in E. coli isolates from companion animals, owners, and non-owners. A total of 27 nalidixic acid (NA)-resistant isolates were identified. Of these, 10 isolates showed ciprofloxacin (CIP) resistance. Efflux pump activity was detected in 18 isolates (66.7%), but this was not correlated with the increased minimum inhibitory concentration (MIC). Target gene mutations in Q resistance-determining regions (QRDRs) were the main cause of (F)Q resistance in E. coli. The number of point mutations in QRDRs was strongly correlated with increased MIC (R = 0.878 for NA and 0.954 for CIP). Interestingly, (F)Q resistance mechanisms observed in isolates from companion animals were the same as those in humans. Therefore, a prudent use of (F)Q in veterinary medicine is warranted to prevent the dissemination of (F)Q-resistant bacteria from animals to humans.
Companion animals such as horses and dogs are considered as one of the reservoirs of AR bacteria that can be cross-transmitted to humans. The inherent risk of any use of antimicrobials to select for AR bacteria poses a relevant risk for public health by spreading of antimicrobial resistance from animals to humans via direct or indirect contacts. However, limited information is available on the possibility of AR bacteria originating from companion animals being transmitted secondarily from owners to non-owners sharing the same space. To address this issue, in the third place, we investigated clonal relatedness among AR E. coli isolated from dog owners and non-owners in the same college classroom or household. Of 31 E. coli, 20 isolates (64.5%) were resistant to at least one antimicrobial, and 16 isolates (51.6%) were determined as multi-drug resistant E. coli. Pulsed-field gel electrophoretic analysis identified three different E. coli clonal sets among isolates, indicating that cross-transmission of AR E. coli can easily occur between owners and non-owners. The findings emphasize a potential risk of spread of AR bacteria originating from companion animals within human communities, once they are transferred to humans.
Antimicrobial resistance is an urgent global problem. There are increasing concerns about the emergence of multi-drug resistant bacteria in humans, animals and environments. The antimicrobial resistance is a complex phenomenon driven by many factors such as the interaction of humans, animals and environmental sources for antimicrobial resistance. Our study also showed that they could be not only reservoirs but also transmitters of antimicrobial-resistant bacteria. Therefore, the aims of combating antimicrobial-resistant bacteria and preserving the efficacy of the currently available antimicrobials in human and veterinary medicine as well as in ecological systems should be addressed in an interdisciplinary effort within a One Health approaches.
Addressing this urgent threat requires the multifaceted strategies. Elements include strengthened surveillance of antimicrobial usage
improved antimicrobial stewardship in humans and animals
approaches to incentivize new antimicrobials development
increased research on mechanisms of resistance
a prudent use of antimicrobials by veterinarians as well as clinicians.
Language
English
URI
https://hdl.handle.net/10371/137010
Files in This Item:
Appears in Collections:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share