SHERP

Detection of sleep disordered breathing severity using acoustic biomarker and machine learning techniques

Cited 0 time in webofscience Cited 0 time in scopus
Authors
Kim, Taehoon; Kim, Jeong-Whun; Lee, Kyogu
Issue Date
2018-02-01
Publisher
BioMed Central
Citation
BioMedical Engineering OnLine, 17(1):16
Keywords
Sleep disordered breathingAcoustic biomarkerDeep neural networkPolysomnography screening testApnea–hypopnea index
Abstract
Purpose
Breathing sounds during sleep are altered and characterized by various acoustic specificities in patients with sleep disordered breathing (SDB). This study aimed to identify acoustic biomarkers indicative of the severity of SDB by analyzing the breathing sounds collected from a large number of subjects during entire overnight sleep.

Methods
The participants were patients who presented at a sleep center with snoring or cessation of breathing during sleep. They were subjected to full-night polysomnography (PSG) during which the breathing sound was recorded using a microphone. Then, audio features were extracted and a group of features differing significantly between different SDB severity groups was selected as a potential acoustic biomarker. To assess the validity of the acoustic biomarker, classification tasks were performed using several machine learning techniques. Based on the apnea–hypopnea index of the subjects, four-group classification and binary classification were performed.

Results
Using tenfold cross validation, we achieved an accuracy of 88.3% in the four-group classification and an accuracy of 92.5% in the binary classification. Experimental evaluation demonstrated that the models trained on the proposed acoustic biomarkers can be used to estimate the severity of SDB.

Conclusions
Acoustic biomarkers may be useful to accurately predict the severity of SDB based on the patient’s breathing sounds during sleep, without conducting attended full-night PSG. This study implies that any device with a microphone, such as a smartphone, could be potentially utilized outside specialized facilities as a screening tool for detecting SDB.
ISSN
1475-925X
Language
English
URI
http://hdl.handle.net/10371/139564
DOI
https://doi.org/10.1186/s12938-018-0448-x
Files in This Item:
Appears in Collections:
College of Medicine/School of Medicine (의과대학/대학원)Otorhinolaryngology (이비인후과학전공)Journal Papers (저널논문_이비인후과학전공)
  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse